Mots-clés : parabolic equations
@article{UFA_2018_10_4_a6,
author = {A. B. Muravnik},
title = {On qualitative properties of solutions to quasilinear parabolic},
journal = {Ufa mathematical journal},
pages = {77--84},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a6/}
}
A. B. Muravnik. On qualitative properties of solutions to quasilinear parabolic. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 77-84. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a6/
[1] S. Kamin, M.A. Pozio, A. Tesei, “Admissible conditions for parabolic equations degenerating at infinity”, St. Peter. Math. J., 19:2 (2008), 239–251 | DOI | MR | Zbl
[2] M. Kardar, G. Parisi, Y.-C. Zhang, “Dynamic scaling of growing interfaces”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl
[3] E. Medina, T. Hwa, M. Kardar, Y.-C. Zhang, “Burgers equation with correlated noise: Renormalization group analysis and applications to directed polymers and interface growth”, Phys. Rev. A, 39 (1989), 3053–3075 | DOI | MR
[4] M. Guedda, R. Kersner, “Self-similar solutions to the generalized deterministic KPZ equation”, Nonlinear Differential Equations Appl., 10:1 (2003), 1–13 | DOI | MR | Zbl
[5] F. Ginelli, H. Hinrichsen, “Mean field theory for skewed height profiles in KPZ growth processes”, J. Phys. A, 37:46 (2004), 11085–11100 | DOI | MR | Zbl
[6] V. V. Anh, N. N. Leonenko, L. M. Sakhno, “Spectral properties of Burgers and KPZ turbulence”, J. Stat. Phys., 122:5 (2006), 949–974 | DOI | MR | Zbl
[7] H. Spohn, “Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals”, Phys. A, 369:1 (2006), 71–99 | DOI | MR
[8] A. Gladkov, M. Guedda, R. Kersner, “A KPZ growth model with possibly unbounded data: correctness and blow-up”, Nonlinear Anal., 68:7 (2008), 2079–2091 | DOI | MR | Zbl
[9] J. Quastel, “KPZ universality for KPZ”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 401–405 | DOI | MR | Zbl
[10] I. Corwin, P. L. Ferrari, S. Péché, “Universality of slow decorrelation in KPZ growth”, Ann. Inst. Henri Poincaré Probab. Stat., 48:1 (2012), 134–150 | DOI | MR | Zbl
[11] G. Schehr, “Extremes of $N$ vicious walkers for large $N$: application to the directed polymer and KPZ interfaces”, J. Stat. Phys., 149:3 (2012), 385–410 | DOI | MR | Zbl
[12] H. Spohn, “KPZ scaling theory and the semidiscrete directed polymer model”, Math. Sci. Res. Inst. Publ., 65 (2014), 483–493 | MR | Zbl
[13] C. Bernardin, P. Gonçalves, S. Sethuraman, “Occupation times of long-range exclusion and connections to KPZ class exponents”, Probab. Theory Related Fields, 166:1–2 (2016), 365–428 | DOI | MR | Zbl
[14] T. Funaki, M. Hoshino, “A coupled KPZ equation, its two types of approximations, and existence of global solutions”, J. Funct. Anal., 273:3 (2017), 1165–1204 | DOI | MR | Zbl
[15] H. Amann, M. G. Crandall, “On some existence theoremes for semi-linear elliptic equations”, Ind. Univ. Math. J., 27:5 (1978), 779–790 | DOI | MR | Zbl
[16] S.I. Pokhozhaev, “On equations of the form $\Delta u = f(x, u,Du)$”, Math. USSR-Sb., 41:2 (1982), 269–280 | DOI | MR | Zbl | Zbl
[17] V. N. Denisov, A. B. Muravnik, “On stabilization of the solution of the Cauchy problem for quasilinear parabolic equations”, Diff. Equat., 38:3 (2002), 369–374 | DOI | MR | Zbl
[18] A. B. Muravnik, “On stabilization of solutions of singular quasi-linear parabolic equations with singular potentials”, Tubes, Sheets and Singularities in Fluid Dynamics, Fluid Mech. Appl., 71, Springer, Dordrecht, 2002, 335–340 | MR
[19] A. B. Muravnik, “Stabilization of solutions of certain singular quasilinear parabolic equations”, Math. Notes, 74:6 (2003), 812–818 | DOI | DOI | MR | Zbl
[20] V. N. Denisov, A. B. Muravnik, “On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 88–93 | DOI | MR | Zbl
[21] V. N. Denisov, A. B. Muravnik, “On the asymptotic behavior of the solution of the Dirichlet problem for an elliptic equation in a half-space”, Nonlinear analysis and nonlinear differential equations, Fizmatlit, M., 2003, 397–417 (in Russian) | Zbl
[22] A.B. Muravnik, “On properties of the stabilization functional of the Cauchy problem for quasilinear parabolic equations”, Trudy Inst. Matem. NAN Belarus, 12:2 (2004), 133–137 | MR
[23] A.B. Muravnik, “On stabilization of solutions of elliptic equations containing Bessel operators”, Integral methods in science and engineering. Analytic and numerical techniques, Birkhäuser, Boston, MA, 2004, 157–162 | DOI | MR | Zbl
[24] A.B. Muravnik, “On stabilization of solutions of singular elliptic equations”, J. Math. Sci., 150:5 (2008), 2408–2421 | DOI | MR | Zbl
[25] A. V. Bitsadze, “Theory of a class of nonlinear partial differential equations”, Differ. Equat., 13 (1977), 1388–1399 | MR | Zbl | Zbl
[26] H. Brezis, S. Kamin, “Sublinear elliptic equations in ${\mathbb R}^n$”, Manuscripta Math., 74 (1992), 87–106 | DOI | MR | Zbl