Order of Dirichlet series with regular distribution of exponents in half-strips
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 50-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Dirichlet series $F(s)=\sum\limits_{n=1}^\infty a_n e^{\lambda_n s}$ with positive and unboundedly increasing exponents $\lambda_n$. We assume that the sequence of the exponents $\Lambda=\{\lambda_n\}$ has a finite density; we denote this density by $b$. We suppose that the sequence $\Lambda$ is regularly distributed. This is understood in the following sense: there exists a positive concave function $H$ in the convergence class such that $$ |\Lambda (t) - bt |\le H (t) \quad (t> 0) \ldotp $$ Here $ \Lambda (t) $ is the counting function of the sequence $ \Lambda $. We show that if, in addition, the growth of the function $H$ is not very high, the orders of the function $F$ in the sense of Ritt in any closed semi-strips, the width of each of which is not less than $ 2 \pi b $, are equal. Moreover, we do not impose additional restrictions for the nearness and concentration of the points $ \lambda_n $. The corresponding result for open semi-strips was previously obtained by A.M. Gaisin and N.N. Aitkuzhina. It is shown that if the width of one of the two semi-strips is less than $ 2 \pi b $, then the Ritt orders of the Dirichlet series in these semi-strips are not equal.
Keywords: $R$-density of sequence, Dirichlet series, $R$-order, semi-strip, half-plane.
@article{UFA_2018_10_4_a4,
     author = {A. M. Gaisin and G. A. Gaisina},
     title = {Order of {Dirichlet} series with regular distribution of exponents in half-strips},
     journal = {Ufa mathematical journal},
     pages = {50--63},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a4/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - G. A. Gaisina
TI  - Order of Dirichlet series with regular distribution of exponents in half-strips
JO  - Ufa mathematical journal
PY  - 2018
SP  - 50
EP  - 63
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a4/
LA  - en
ID  - UFA_2018_10_4_a4
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A G. A. Gaisina
%T Order of Dirichlet series with regular distribution of exponents in half-strips
%J Ufa mathematical journal
%D 2018
%P 50-63
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a4/
%G en
%F UFA_2018_10_4_a4
A. M. Gaisin; G. A. Gaisina. Order of Dirichlet series with regular distribution of exponents in half-strips. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 50-63. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a4/

[1] J. F. Ritt, “On certain points in the theory of Dirichlet series”, Amer. J. of Math., 50:1 (1928), 73–86 | DOI | MR | Zbl

[2] S. Mandelbrojt, Séries adhérentes. Régularisation des suites. Applications, Gauthier-Villars, Paris, 1952 | MR

[3] A. F. Leont'ev, Sequences of exponential polynomials, Nauka, M., 1980 (in Russian)

[4] G.S. Sadykhov, Issues on grwoth of functions defined by Dirichlet series and other more general series, Review of PhD thesis, M., 1968 (in Russian)

[5] M. N. Sheremeta, “Growth in a strip of entire functions represented by Dirichlet series”, Math. USSR-Izv., 18:3 (1982), 587–598 | DOI | MR | Zbl | Zbl

[6] O. B. Skaskiv, Asymptotic properties of analytic functions represented by power series and Dirichlet series, Review of Habilitation thesis, Lviv, 1996 (in Ukrainian)

[7] A. M. Gaisin, “An estimate for a Dirichlet series whose exponents are zeros of an entire function with irregular behavior”, Russ. Acad. Sci. Sb. Math., 81:1 (1995), 163–183 | MR | Zbl

[8] A. M. Gaisin, Asymptotic properties of functions defined by exponential series, Habilitation thesis, Ufa, 1994 (in Russian)

[9] A. M. Gaisin, N. N. Aitkuzhina, “The order of a Dirichlet series with an irregular distribution of the exponents in the half-strip”, St. Petersburg Math. J., 2019 | MR

[10] A. M. Gaĭsin, “A bound for the growth in a half-strip of a function represented by a Dirichlet series”, Math. USSR-Sbornik, 43:3 (1983), 411–422 | MR

[11] N. N. Aitkuzhina, A. M. Gaisin, “Exactness of estimates for kth order of Dirichlet series in a semi-strip”, Ufa Math. J., 7:4 (2015), 15–23 | DOI | MR

[12] A. M. Gaisin, D. I. Sergeeva, “An estimate for the Dirichlet series in a half-strip in the case of the irregular distribution of exponents. II”, Siber. Math. J., 49:2 (2008), 222–238 | DOI | MR | Zbl

[13] S. Mandelbrojt, Dirichlet series. Principles and methods, D. Reidel Publishing Company, Dordrecht, 1972 | MR | MR | Zbl

[14] A. M. Gaisin, D. I. Sergeeva, “Entire functions with a given sequence of zeros and of regular behavior on the real axis. I”, Siber. Math. J., 48:5 (2007), 798–808 | DOI | MR | Zbl

[15] A. F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR

[16] A. M. Gaisin, “Behavior of the sum of a Dirichlet series in halfstrips”, Math. Notes, 42:5 (1987), 863–868 | MR | Zbl

[17] I. I. Ibragimov, Interpolation methods for functions and some of their applications, Nauka, M., 1971 (in Russian)