Mots-clés : global solution
@article{UFA_2018_10_4_a3,
author = {V. F. Vil'danova},
title = {On uniqueness of weak solution to mixed problem for integro-differential aggregation equation},
journal = {Ufa mathematical journal},
pages = {40--49},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a3/}
}
V. F. Vil'danova. On uniqueness of weak solution to mixed problem for integro-differential aggregation equation. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 40-49. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a3/
[1] Carrillo J. A., Hittmeir S., Volzone B., Yao Y., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, 2016, 47 pp., arXiv: 1603.07767v1 [math.ap]
[2] Keller E. F., Segel L. A., “Initiation of slide mold aggregation viewed as an instability”, J. Theor. Biol., 26 (1970), 399–415 | DOI | Zbl
[3] Chavanis P. H., Rosier C., Sire C., “Thermodynamics of self-gravitating systems”, Foundat. Phys., 33:2 (2003), 223–269 ; (2002), 36 pp., arXiv: cond-mat/0107345v3 [cond-mat.stat-mech] | DOI | MR
[4] Biler P., Nadzieja T., “Global and exploding solutions in a model of self-gravitating systems”, Reports on mathematical physics, 52:2 (2003), 205–225 | DOI | MR | Zbl
[5] Chavanis P. H., Sommeria J.,Robert R., “Statistical mechanics of two-dimensional vortices and collisionless stellar systems”, J. Astrophys., 471 (1996), 385–399 | DOI
[6] V. F. Vil'danova, “Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form”, Sb. Math., 209:2 (2018), 206–221 | DOI | DOI | MR | Zbl
[7] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl
[8] V. F. Vildanova, F. Kh. Mukminov, “Existence of weak solution of the aggregation integro-differential equation”, Sovr. Probl. Matem. Fund. Napr., 63, no. 4, 2017, 557–572 | MR
[9] Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl
[10] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monog., 90, AMS, Providence, RI, 1991 | MR | MR | Zbl
[11] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, v. I, Springer, Berlin, 1972 | MR