On uniqueness of weak solution to mixed problem for integro-differential aggregation equation
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 40-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a well-known paper by A. Bertozzi, D. Slepcev (2010), there was established the existence and uniqueness of solution to a mixed problem for the aggregation equation $$ u_t - \Delta A(x, u) + {\rm div}\, (u\nabla K \ast u)=0 $$ describing the evolution of a colony of bacteria in a bounded convex domain $\Omega$. In this paper we prove the existence and uniqueness of the solution to a mixed problem for a more general equation $$ \beta(x,u)_t={\rm div}\,(\nabla A(x,u)-\beta(x,u)G(u))+f(x,u). $$ The term $f(x,u)$ in the equation models the processes of “birth-destruction” of bacteria. The class of integral operators $G(v)$ is wide enough and contains, in particular, the convolution operators $\nabla K \ast u$. The vector kernel $g (x,y)$ of the operator $G(u)$ can have singularities.Proof of the uniqueness of the solution in the work by A. Bertozzi, D. Slepcev was based on the conservation of the mass $\int_\Omega u(x,t)dx=const$ of bacteria and employed the convexity of $\Omega$ and the properties of the convolution operator. The presence of the “inhomogeneity” $f(x,u)$ violates the mass conservation. The proof of uniqueness proposed in the paper is suitable for a nonuniform equation and does not use the convexity of $\Omega$.
Keywords: aggregation equation, integro-differential equation, uniqueness of solution.
Mots-clés : global solution
@article{UFA_2018_10_4_a3,
     author = {V. F. Vil'danova},
     title = {On uniqueness of weak solution to mixed problem for integro-differential aggregation equation},
     journal = {Ufa mathematical journal},
     pages = {40--49},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a3/}
}
TY  - JOUR
AU  - V. F. Vil'danova
TI  - On uniqueness of weak solution to mixed problem for integro-differential aggregation equation
JO  - Ufa mathematical journal
PY  - 2018
SP  - 40
EP  - 49
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a3/
LA  - en
ID  - UFA_2018_10_4_a3
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%T On uniqueness of weak solution to mixed problem for integro-differential aggregation equation
%J Ufa mathematical journal
%D 2018
%P 40-49
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a3/
%G en
%F UFA_2018_10_4_a3
V. F. Vil'danova. On uniqueness of weak solution to mixed problem for integro-differential aggregation equation. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 40-49. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a3/

[1] Carrillo J. A., Hittmeir S., Volzone B., Yao Y., Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics, 2016, 47 pp., arXiv: 1603.07767v1 [math.ap]

[2] Keller E. F., Segel L. A., “Initiation of slide mold aggregation viewed as an instability”, J. Theor. Biol., 26 (1970), 399–415 | DOI | Zbl

[3] Chavanis P. H., Rosier C., Sire C., “Thermodynamics of self-gravitating systems”, Foundat. Phys., 33:2 (2003), 223–269 ; (2002), 36 pp., arXiv: cond-mat/0107345v3 [cond-mat.stat-mech] | DOI | MR

[4] Biler P., Nadzieja T., “Global and exploding solutions in a model of self-gravitating systems”, Reports on mathematical physics, 52:2 (2003), 205–225 | DOI | MR | Zbl

[5] Chavanis P. H., Sommeria J.,Robert R., “Statistical mechanics of two-dimensional vortices and collisionless stellar systems”, J. Astrophys., 471 (1996), 385–399 | DOI

[6] V. F. Vil'danova, “Existence and uniqueness of a weak solution of a nonlocal aggregation equation with degenerate diffusion of general form”, Sb. Math., 209:2 (2018), 206–221 | DOI | DOI | MR | Zbl

[7] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl

[8] V. F. Vildanova, F. Kh. Mukminov, “Existence of weak solution of the aggregation integro-differential equation”, Sovr. Probl. Matem. Fund. Napr., 63, no. 4, 2017, 557–572 | MR

[9] Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic-parabolic problem in anisotropic Sobolev-Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | Zbl

[10] S. L. Sobolev, Some applications of functional analysis in mathematical physics, Transl. Math. Monog., 90, AMS, Providence, RI, 1991 | MR | MR | Zbl

[11] J. L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, v. I, Springer, Berlin, 1972 | MR