Discs and boundary uniqueness for psh functions on almost complex manifold
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 129-136

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is inspired by the work by J.-P. Rosay (2010). In this work, there was sketched a proof of the fact that a totally real submanifold of dimension $2$ can not be a pluripolar subset of an almost complex manifold of complex dimension $2$. In the present paper we prove a considerably more general result, which can be viewed as a boundary uniqueness theorem for plurisubharmonic functions. It states that a function plurisubharmonic in a wedge with a generic totally real edge is equal to $-\infty$ identically if it tends to $-\infty$ approaching the edge. Our proof is completely different from the argument by J.-P. Rosay. We develop a method based on construction of a suitable family of $J$-complex discs. The origin of this approach is due to the well-known work by S. Pinchuk (1974), where the case of the standard complex structure was settled. The required family of complex discs is obtained as a solution to a suitable integral equation generalizing the classical Bishop method. In the almost complex case this equation arises from the Cauchy–Green type formula. We hope that the almost complex version of this construction presented here will have other applications.
Keywords: almost complex structure, plurisubharmonic function, complex disc, totally real manifold.
@article{UFA_2018_10_4_a12,
     author = {A. Sukhov},
     title = {Discs and boundary uniqueness for psh functions on  almost complex manifold},
     journal = {Ufa mathematical journal},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a12/}
}
TY  - JOUR
AU  - A. Sukhov
TI  - Discs and boundary uniqueness for psh functions on  almost complex manifold
JO  - Ufa mathematical journal
PY  - 2018
SP  - 129
EP  - 136
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a12/
LA  - en
ID  - UFA_2018_10_4_a12
ER  - 
%0 Journal Article
%A A. Sukhov
%T Discs and boundary uniqueness for psh functions on  almost complex manifold
%J Ufa mathematical journal
%D 2018
%P 129-136
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a12/
%G en
%F UFA_2018_10_4_a12
A. Sukhov. Discs and boundary uniqueness for psh functions on  almost complex manifold. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 129-136. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a12/