@article{UFA_2018_10_4_a11,
author = {Ya. Il'yasov and N. Valeev},
title = {On inverse spectral problem and generalized {Sturm} nodal theorem for nonlinear boundary value problems},
journal = {Ufa mathematical journal},
pages = {122--128},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a11/}
}
TY - JOUR AU - Ya. Il'yasov AU - N. Valeev TI - On inverse spectral problem and generalized Sturm nodal theorem for nonlinear boundary value problems JO - Ufa mathematical journal PY - 2018 SP - 122 EP - 128 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a11/ LA - en ID - UFA_2018_10_4_a11 ER -
Ya. Il'yasov; N. Valeev. On inverse spectral problem and generalized Sturm nodal theorem for nonlinear boundary value problems. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 122-128. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a11/
[1] V. Ambarzumian, “Über eine frage der eigenwerttheorie”, Zeit. Physik A Hadrons and Nuclei, 53:9 (1929), 690–695 | Zbl
[2] G. Borg, “Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe”, Acta Math, 78:1 (1946), 1–96 | DOI | MR | Zbl
[3] D. E. Edmunds, W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, 15, Clarendon Press, Oxford, 1987 | MR
[4] I. M. Gel'fand, B. M. Levitan, “On the determination of a differential equation from its spectral function”, Izv. RAN. Ser. Matem., 15:4 (1951), 309–360 (in Russian) | MR | Zbl
[5] Y. Sh. Ilyasov, N. F. Valeev, “On an inverse optimization spectral problem and a related nonlinear boundary value problem”, Math. Notes, 104:4 (2018), 601–605 | MR
[6] Y. Sh. Ilyasov, N. F. Valeev, “On nonlinear boundary value problem corresponding to $N$-dimensional inverse spectral problem”, J. Diff. Equat. (to appear)
[7] M. Möller, A. Zettl, “Differentiable dependence of eigenvalues of operators in Banach spaces”, J. Oper. Theor., 36:2 (1996), 335–355 | MR | Zbl
[8] J. Pöschel, E. Trubowitz, Inverse spectral theory, Pure Appl. Math., 130, Academic Press, Boston, 1987 | MR | Zbl
[9] A. A. Shkalikov, “Perturbations of self-adjoint and normal operators with discrete spectrum”, Russ. Math. Surv., 71:5 (2016), 907–965 | DOI | MR
[10] A. Zettl, Sturm-Liouville theory, Math. Surv. Monog., 121, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl