Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 111-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The double-layer potential plays an important role in solving boundary value problems for elliptic equations, and in studying this potential, the properties of the fundamental solutions of the given equation are used. At present, all fundamental solutions to the generalized bi-axially symmetric Helmholtz equation are known but nevertheless, only for the first of them the potential theory was constructed. In this paper we study the double layer potential corresponding to the third fundamental solution. By using properties of Appell hypergeometric functions of two variables, we prove limiting theorems and derive integral equations involving the density of double-layer potentials in their kernels.
Keywords: generalized bi-axially symmetric Helmholtz equation, Green formula, fundamental solution, third double-layer potential, Appell hypergeometric functions of two variables, integral equations with a density of double-layer potential in their kernel.
@article{UFA_2018_10_4_a10,
     author = {T. G. Ergashev},
     title = {Third double-layer potential for a generalized bi-axially symmetric {Helmholtz} equation},
     journal = {Ufa mathematical journal},
     pages = {111--121},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a10/}
}
TY  - JOUR
AU  - T. G. Ergashev
TI  - Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation
JO  - Ufa mathematical journal
PY  - 2018
SP  - 111
EP  - 121
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a10/
LA  - en
ID  - UFA_2018_10_4_a10
ER  - 
%0 Journal Article
%A T. G. Ergashev
%T Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation
%J Ufa mathematical journal
%D 2018
%P 111-121
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a10/
%G en
%F UFA_2018_10_4_a10
T. G. Ergashev. Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 111-121. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a10/

[1] C. Miranda, Equazioni alle derivate parziali di tipo ellittico, Berlin, 1955 (in Italian) | MR | Zbl

[2] N. M. Günter, Potential theory and its application to main problems in mathematical physics, Gostekhizdat, M., 1953 (in Russian) | MR

[3] R. P. Gilbert, Function Theoretic Methods in Partial Differential Equations. Mathematics in Science and Engineering, A Series of Monographs and Textbooks, 54, Academic Press, New York–London, 1969, 308 pp. | MR

[4] A. Hasanov, “Fundamental solutions of generalized bi-axially symmetric Helmholtz equation”, Complex Variables and Elliptic Equations, 52:8 (2007), 673–683 | DOI | MR | Zbl

[5] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d'Hermite, Gauthier-Villars, Paris, 1926, 440 pp.

[6] A. Erdélyi, W. Magnus, F. Oberhettinger, G. Tricomi, Higher transcendental functions, v. I, McGraw-Hill Book Co., New York, 1953

[7] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited), Chicherster; John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1985, 386 pp. | MR | Zbl

[8] R. M. Mavlyaviev, “Construction of Fundamental Solutions to $B$-Elliptic Equations with Minor Terms”, Russian Mathematics, 61:6 (2017), 60–65 | DOI | MR | Zbl

[9] M. M. Smirnov, Degenerate hyperbolic equations, Nauka, M., 1966 (in Russian)

[10] S. P. Pul'kin, “Some boundary value problems for equation $u_{xx}\pm u_{yy}+\frac{p}{x}u_x=0$”, Bull. Kuibyshev Pedag. Inst., 1958, no. 21, 3–54 (in Russian)

[11] H. M. Srivastava, A. Hasanov, J. Choi, “Double-Layer Potentials for a Generalized Bi-Axially Symmetric Helmholtz Equation”, Sohag Journal of Mathematics, 2:1 (2015), 1–10

[12] M. Rassias, A. Hasanov, “Fundamental Solutions of Two Degenerated Elliptic Equations and Solutions of Boundary Value Problems in Infinite Area”, International Journal of Applied Mathematics Statistics, 8:M07 (2007), 87–95 | MR | Zbl

[13] J. L. Burchnall, T. W. Chaundy, “Expansions of Appell's double hypergeometric functions”, Quart. J. Math. Oxford Ser., 11 (1940), 249–270 | DOI | MR

[14] I. S. Gradshtejn, I. M. Ryzhik, Tables of series, products, and integrals, v. 1, 2, Verlag Harri Deutsch, Frankfurt-am-Main, 1981 | MR | MR | Zbl