@article{UFA_2018_10_4_a0,
author = {N. F. Abuzyarova and K. P. Isaev and R. S. Yulmukhametov},
title = {Equivalence of norms of analytical functions on exterior of convex domain},
journal = {Ufa mathematical journal},
pages = {3--11},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/}
}
TY - JOUR AU - N. F. Abuzyarova AU - K. P. Isaev AU - R. S. Yulmukhametov TI - Equivalence of norms of analytical functions on exterior of convex domain JO - Ufa mathematical journal PY - 2018 SP - 3 EP - 11 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/ LA - en ID - UFA_2018_10_4_a0 ER -
N. F. Abuzyarova; K. P. Isaev; R. S. Yulmukhametov. Equivalence of norms of analytical functions on exterior of convex domain. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/
[1] I.I. Privalov, Boundary values of analytic functions, Gostekhizdat, M., 1950 (in Russian) | MR
[2] V.I. Lutsenko, R. S. Yulmukhametov, “A generalization of Wiener-Paley theorem to functionals in Smirnov spaces”, Proc. Steklov Inst. Math., 200 (1993), 271–280 | Zbl
[3] V.V. Napalkov, R.S. Yulmukhametov, “On the Cauchy transform of functionals on a Bergman space”, Russ. Acad. Sci. Sb. Math., 82:2 (1994), 327–336 | MR | Zbl
[4] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR | Zbl
[5] L.I. Ronkin, Introduction to the theory of entire functions of several variables, Transl. Math. Monog., 44, Amer. Math. Soc., Providence, R.I., 1974 | MR | Zbl
[6] V.E. Kacnelson, “Generalization of Wiener-Paley theorem on representation of entire functions of finite degree”, Teor. Funkts. Funkts. Anal. Pril., 1965, no. 1, 99–110 (in Russian)
[7] J.B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York, 1981 (English) | MR | Zbl
[8] W.K. Hayman, P.B. Kennedy, Subharmonic functions, London Math. Soc. Monog., Academic Press, London, 1976 | MR | MR | Zbl