Equivalence of norms of analytical functions on exterior of convex domain
Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 3-11
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the spaces of functions holomorphic in the exterior of a bounded domain $D$ and vanishing at infinity. For each $\alpha >-\frac 12$ we introduce the integral weighted normed space $B_2^\alpha (G)$ with the weight $d^\alpha (z)$, where $d(z)$ denotes the distance from a point $z$ to the boundary of $G:=\mathbb{C} \setminus \overline{D}$. For $\alpha = - \frac 12$, the space $B_2^\alpha $ is chosen to be the Smirnov space. We prove that for a convex domain $D$, the norms in these spaces are equivalent to other norms defined in terms of the derivatives. For instance, the norm in the Smirnov space calculated as an integral with respect to the arc length over the boundary is equivalent to some norm defined by an integral with respect to the Lebesgue plane measure. In particular cases the proved results were obtained while studying the problem on describing the classes of Cauchy transforms of the functionals on the Bergman space on $D$. The general results may be applied in the study of Cauchy transforms of functionals on weighted Bergman spaces.
Keywords: analytic functions, Banach spaces, convex sets.
@article{UFA_2018_10_4_a0,
     author = {N. F. Abuzyarova and K. P. Isaev and R. S. Yulmukhametov},
     title = {Equivalence of norms of analytical functions on exterior of convex domain},
     journal = {Ufa mathematical journal},
     pages = {3--11},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Equivalence of norms of analytical functions on exterior of convex domain
JO  - Ufa mathematical journal
PY  - 2018
SP  - 3
EP  - 11
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/
LA  - en
ID  - UFA_2018_10_4_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Equivalence of norms of analytical functions on exterior of convex domain
%J Ufa mathematical journal
%D 2018
%P 3-11
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/
%G en
%F UFA_2018_10_4_a0
N. F. Abuzyarova; K. P. Isaev; R. S. Yulmukhametov. Equivalence of norms of analytical functions on exterior of convex domain. Ufa mathematical journal, Tome 10 (2018) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/UFA_2018_10_4_a0/

[1] I.I. Privalov, Boundary values of analytic functions, Gostekhizdat, M., 1950 (in Russian) | MR

[2] V.I. Lutsenko, R. S. Yulmukhametov, “A generalization of Wiener-Paley theorem to functionals in Smirnov spaces”, Proc. Steklov Inst. Math., 200 (1993), 271–280 | Zbl

[3] V.V. Napalkov, R.S. Yulmukhametov, “On the Cauchy transform of functionals on a Bergman space”, Russ. Acad. Sci. Sb. Math., 82:2 (1994), 327–336 | MR | Zbl

[4] E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR | Zbl

[5] L.I. Ronkin, Introduction to the theory of entire functions of several variables, Transl. Math. Monog., 44, Amer. Math. Soc., Providence, R.I., 1974 | MR | Zbl

[6] V.E. Kacnelson, “Generalization of Wiener-Paley theorem on representation of entire functions of finite degree”, Teor. Funkts. Funkts. Anal. Pril., 1965, no. 1, 99–110 (in Russian)

[7] J.B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York, 1981 (English) | MR | Zbl

[8] W.K. Hayman, P.B. Kennedy, Subharmonic functions, London Math. Soc. Monog., Academic Press, London, 1976 | MR | MR | Zbl