New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 131-141
Voir la notice de l'article provenant de la source Math-Net.Ru
In terms of Berezin symbols, we give new characterizations of the Bloch spaces
$\mathcal{B}$ and $\mathcal{B}_{0}$б Bers-type and the Zygmund-type spaces of
analytic functions on the unit disc $\mathbb{D}$ in the complex plane
$\mathbb{C}$ю We discuss some properties of Toeplitz operators on
the Bergman space $L_{a}^{2}(\mathbb{D})$. We provide a new characterization of certain
function space with variable exponents. Namely, given a function $f(z)=
{\displaystyle\sum\limits_{n=0}^{\infty}}
\widehat{f}(n)z^{n}\in \mathrm{Hol}(\mathbb{D})$ with a bounded
sequence $\left\{ \widehat{f}(n)\right\} _{n\geq0}$ of Taylor coefficients
$\widehat{f}(n)=\frac{f^{(n)}(0)}{n!},$ $\left( n=0,1,2,\dots\right) $, we have
$f\in H_{p(\cdot),q(\cdot),\gamma(\cdot)}$ if and only if
$$
\int\limits_{0}^{1}
\left( \frac{1}{2\pi}
{\displaystyle\int\limits_{0}^{2\pi}}
\left\vert \widetilde{D}_{(\widehat{f}(n)e^{int})}(\sqrt{r})\right\vert
^{p(t)}dt\right) ^{\frac{q(t)}{p(t)}}(1-r)^{\frac{\gamma(t)p(t)-q(t)}{p(t)}
}dr+\infty.
$$
Here $D_{(a_{n})}$ denotes the associate diagonal operator on the
Hardy–Hilbert space $H^{2}$ defined by the formula $D_{(a_{n})}z^{n}=a_{n}z^{n}\text{ }(n=0,1,2,\dots)$.
Keywords:
Bers-type space, Zygmund-type space
Mots-clés : Bloch spaces, Berezin symbol.
Mots-clés : Bloch spaces, Berezin symbol.
@article{UFA_2018_10_3_a9,
author = {M. Garayev and H. Guediri and H. Sadraoui},
title = {New characterizations of {Bloch} spaces, {Bers-type} and {Zygmund-type} spaces and {Related} {Questions}},
journal = {Ufa mathematical journal},
pages = {131--141},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/}
}
TY - JOUR AU - M. Garayev AU - H. Guediri AU - H. Sadraoui TI - New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions JO - Ufa mathematical journal PY - 2018 SP - 131 EP - 141 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/ LA - en ID - UFA_2018_10_3_a9 ER -
%0 Journal Article %A M. Garayev %A H. Guediri %A H. Sadraoui %T New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions %J Ufa mathematical journal %D 2018 %P 131-141 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/ %G en %F UFA_2018_10_3_a9
M. Garayev; H. Guediri; H. Sadraoui. New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 131-141. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/