New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 131-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In terms of Berezin symbols, we give new characterizations of the Bloch spaces $\mathcal{B}$ and $\mathcal{B}_{0}$б Bers-type and the Zygmund-type spaces of analytic functions on the unit disc $\mathbb{D}$ in the complex plane $\mathbb{C}$ю We discuss some properties of Toeplitz operators on the Bergman space $L_{a}^{2}(\mathbb{D})$. We provide a new characterization of certain function space with variable exponents. Namely, given a function $f(z)= {\displaystyle\sum\limits_{n=0}^{\infty}} \widehat{f}(n)z^{n}\in \mathrm{Hol}(\mathbb{D})$ with a bounded sequence $\left\{ \widehat{f}(n)\right\} _{n\geq0}$ of Taylor coefficients $\widehat{f}(n)=\frac{f^{(n)}(0)}{n!},$ $\left( n=0,1,2,\dots\right) $, we have $f\in H_{p(\cdot),q(\cdot),\gamma(\cdot)}$ if and only if $$ \int\limits_{0}^{1} \left( \frac{1}{2\pi} {\displaystyle\int\limits_{0}^{2\pi}} \left\vert \widetilde{D}_{(\widehat{f}(n)e^{int})}(\sqrt{r})\right\vert ^{p(t)}dt\right) ^{\frac{q(t)}{p(t)}}(1-r)^{\frac{\gamma(t)p(t)-q(t)}{p(t)} }dr+\infty. $$ Here $D_{(a_{n})}$ denotes the associate diagonal operator on the Hardy–Hilbert space $H^{2}$ defined by the formula $D_{(a_{n})}z^{n}=a_{n}z^{n}\text{ }(n=0,1,2,\dots)$.
Keywords: Bers-type space, Zygmund-type space
Mots-clés : Bloch spaces, Berezin symbol.
@article{UFA_2018_10_3_a9,
     author = {M. Garayev and H. Guediri and H. Sadraoui},
     title = {New characterizations of {Bloch} spaces, {Bers-type} and {Zygmund-type} spaces and {Related} {Questions}},
     journal = {Ufa mathematical journal},
     pages = {131--141},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/}
}
TY  - JOUR
AU  - M. Garayev
AU  - H. Guediri
AU  - H. Sadraoui
TI  - New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions
JO  - Ufa mathematical journal
PY  - 2018
SP  - 131
EP  - 141
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/
LA  - en
ID  - UFA_2018_10_3_a9
ER  - 
%0 Journal Article
%A M. Garayev
%A H. Guediri
%A H. Sadraoui
%T New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions
%J Ufa mathematical journal
%D 2018
%P 131-141
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/
%G en
%F UFA_2018_10_3_a9
M. Garayev; H. Guediri; H. Sadraoui. New characterizations of Bloch spaces, Bers-type and Zygmund-type spaces and Related Questions. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 131-141. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a9/

[1] J.M. Ash, M.T. Karaev, “On the boundary behavior of special classes of $C^{\infty}$-functions and analytic functions”, Intern. Math. Forum., 7:1–4 (2012), 153–166 | MR | Zbl

[2] P. Duren, Theory of $H^{p}$ spaces, Dover Publications, Mineola, 2000

[3] M.T. Karaev, “A characterization of the some function classes”, J. Funct. Spaces. Appl., 2012 (2012), 796798 | DOI | MR | Zbl

[4] V. Kokilashvili, V. Paatashvili, “On Hardy classes of analytic functions with a variable exponent”, Proc. A. Razmadze Math. Inst., 142:1 (2006), 134–137 | MR | Zbl

[5] V. Kokilashvili, V. Paatashvili, “On the convergence of sequences of functions in Hardy classes with a variable exponent”, Proc. A. Razmadze Math. Inst., 146:1 (2008), 124–126 | MR | Zbl

[6] M. Pavlović, Introduction to Function Spaces on the Disk, Matematicki Institut SANU, Belgrade, 2004 | MR | Zbl

[7] N. Popa, “A characterization of upper triangular trace class matrices”, Compt. Rend. Math., 347:1–2 (2009), 59–62 | DOI | MR | Zbl

[8] I.I. Privalov, Granicnye svoistva analiticeskih funkciĭ, GosTekhIzdat, M., 1950 (in Russian) | MR

[9] Y. Ren., “New criteria for generalized weighted composition operators from mixed norm spaces into Zygmund-type spaces”, Filomat, 26:6 (2012), 1171–1178 | DOI | MR | Zbl

[10] J. Shi, “Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of $\mathbb{C}^{n}$”, Trans, Amer. Math. Soc., 328:2 (1991), 619–637 | DOI | MR | Zbl

[11] S. Stević, “Weighted composition operators between mixed norm spaces and $H_{\alpha}^{\infty}$ spaces in the unit ball”, J. Ineq. Appl., 2007:1 (2008), 1–9 | MR

[12] S. Stević, “Norm and essential norm of composition followed by differentiation from $\alpha$-Bloch spaces to $H_{\mu}^{\infty}$”, Appl. Math. Comput., 207:1 (2009), 225–229 | MR | Zbl

[13] J. Tung., “Taylor coefficients of functions in Fock spaces”, J. Math. Anal. Appl., 318:2 (2006), 397–409 | DOI | MR | Zbl

[14] K. Zhu, Operator theory in function spaces, Marcel, New York, 1990 | MR | Zbl

[15] K. Zhu, “Bloch type spaces of analytic functions”, Rocky Mount. J. Math., 23:3 (1993), 1143–1177 | DOI | MR | Zbl

[16] X. Zhu, “Generalized weighted composition operators from Bloch spaces into Bers-type spaces”, Filomat, 26:6 (2012), 1163–1169 | DOI | MR | Zbl