@article{UFA_2018_10_3_a8,
author = {A. B\"erd\"ellima},
title = {On {Khabibullin's} conjecture about pair of integral inequalities},
journal = {Ufa mathematical journal},
pages = {117--130},
year = {2018},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a8/}
}
A. Bërdëllima. On Khabibullin's conjecture about pair of integral inequalities. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 117-130. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a8/
[1] R. A. Baladai, B. N. Khabibullin, “Three equivalent hypotheses on estimation of integrals”, Ufa Math. Journal, 2:3 (2010), 31–38 | Zbl
[2] A. Bërdëllima, “About a Conjecture Regarding Plurisubharmonic Functions”, Ufa Math. J., 7:4 (2015), 154–165 | DOI | MR
[3] N.V. Govorov, “Paley's conjecture”, Funct. Anal. Appl., 3:2 (1969), 115–118 | DOI | MR
[4] B. Khabibullin, “Paley problem for plurisubharmonic functions of finite lower order”, Sb. Math., 190:2 (1999), 145–157 | DOI | MR | Zbl
[5] B. Khabibullin, A conjecture on some estimates for integrals, 2010, arXiv: 1005.3913
[6] B. Khabibulin, “The representation of a meromorphic function as the quotient of entire functions and Paley problem in $\mathbb{C}_n$: survey of some results”, Math. Phys. Anal. Geom., 9:2 (2002), 146–167 | MR
[7] R. A. Sharipov, A note on Khabibullin's conjecture for integral inequalities, 2010, arXiv: 1008.0376
[8] R. A. Sharipov, “A counterexample to Khabibullin's conjecture for integral inequalities”, Ufa Math. J., 2:4 (2010), 98–106
[9] J. Stewart, Calculus: Early Transcendentals, Cengage Learning, Boston, 2016