On description of generalized invariant manifolds for nonlinear equations
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 106-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we discuss the problem on constructing generalized invariant manifolds for nonlinear partial differential equations. A generalized invariant manifold for a given nonlinear equation is a differential connection that is compatible with the linearization of this equation. In fact, this concept generalizes symmetry. Examples of generalized invariant manifolds obtained from symmetries are given in the paper. However, there exist generalized invariant manifolds irreducible to symmetries, exactly they are of the greatest interest. Such generalized invariant manifolds allow one to construct effectively Lax pairs, recursion operators, and particular solutions to integrable equations. In the work we present the algorithm for constructing a generalized invariant manifold for a given equation. A complete description of generalized invariant manifolds of order $(2,2)$ is given for the Korteweg–de Vries equation. We describe briefly a method for constructing a Lax pair and a recursion operator by means of the generalized invariant manifolds. As an example, the Korteweg–de Vries equation is considered.
Keywords: higher symmetry, invariant manifold, recursion operator.
Mots-clés : Lax pair
@article{UFA_2018_10_3_a7,
     author = {A. R. Khakimova},
     title = {On description of generalized invariant manifolds for nonlinear equations},
     journal = {Ufa mathematical journal},
     pages = {106--116},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a7/}
}
TY  - JOUR
AU  - A. R. Khakimova
TI  - On description of generalized invariant manifolds for nonlinear equations
JO  - Ufa mathematical journal
PY  - 2018
SP  - 106
EP  - 116
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a7/
LA  - en
ID  - UFA_2018_10_3_a7
ER  - 
%0 Journal Article
%A A. R. Khakimova
%T On description of generalized invariant manifolds for nonlinear equations
%J Ufa mathematical journal
%D 2018
%P 106-116
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a7/
%G en
%F UFA_2018_10_3_a7
A. R. Khakimova. On description of generalized invariant manifolds for nonlinear equations. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 106-116. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a7/

[1] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozhenie v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[2] Yanenko N. N., “Ob invariantnykh differentsialnykh svyazyakh dlya giperbolicheskikh sistem kvazilineinykh uravnenii”, Izv. vuzov. Matem., 1961, no. 3, 185–194 | Zbl

[3] I.T. Habibullin, A.R. Khakimova, M.N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, Journal of Physics A: Mathematical and Theoretical, 49:3 (2016), 035202, 35 pp. | DOI | MR | Zbl

[4] Pavlova E. V., Khabibullin I. T., Khakimova A. R., “Ob odnoi integriruemoi diskretnoi sisteme”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 30–42

[5] Khabibullin I. T., Khakimova A. R., “Invariantnye mnogoobraziya i pary Laksa dlya integriruemykh nelineinykh tsepochek”, Teoreticheskaya i matematicheskaya fizika, 191:3 (2017), 369–388 | DOI | MR

[6] I.T. Habibullin, A.R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, Journal of Physics A: Mathematical and Theoretical, 50:30 (2017), 305206, 19 pp. | DOI | MR | Zbl

[7] Khabibullin I. T., Khakimova A. R., “O pryamom algoritme postroeniya rekursionnykh operatorov i par Laksa dlya integriruemykh modelei”, TMF, 196:2 (2018), 294–312 | MR

[8] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl

[9] Zakharov V. E., Shabat A. B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | MR

[10] H.D. Wahlquist, F B. Estabrook, “Prolongation structures of nonlinear evolution equations”, Journal of Mathematical Physics, 16:1 (1975), 1–7 | DOI | MR | Zbl

[11] F.W. Nijhoff, A.J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasgow Mathematical Journal, 43:A (2001), 109–123 | DOI | MR

[12] A.I. Bobenko, Yu.B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notes, 11 (2002), 573–611 | DOI | MR | Zbl

[13] F.W. Nijhoff, “Lax pair for the Adler (lattice Krichever-Novikov) system”, Physics Letters A, 297:1–2 (2002), 49–58 | DOI | MR | Zbl

[14] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, ed. A. B. Shabat, BFAN SSSR, Ufa, 1982, 95–114

[15] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proc. 4th Workshop “Group Analysis of Differential Equations and Integrable Systems”, 2009, 226–242, arXiv: 0902.3954 | MR | Zbl

[16] V.V. Sokolov, Algebraic structures related to integrable differential equations, 2017, arXiv: 1711.10613 | MR

[17] P.D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 67–90 | DOI | MR

[18] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, “Korteweg-deVries equation and generalizations. VI. Methods for exact solution”, Commun. Pure Appl. Math., 27:1 (1974), 97–133 | DOI | MR | Zbl