Mots-clés : Lax pair
@article{UFA_2018_10_3_a7,
author = {A. R. Khakimova},
title = {On description of generalized invariant manifolds for nonlinear equations},
journal = {Ufa mathematical journal},
pages = {106--116},
year = {2018},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a7/}
}
A. R. Khakimova. On description of generalized invariant manifolds for nonlinear equations. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 106-116. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a7/
[1] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozhenie v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR
[2] Yanenko N. N., “Ob invariantnykh differentsialnykh svyazyakh dlya giperbolicheskikh sistem kvazilineinykh uravnenii”, Izv. vuzov. Matem., 1961, no. 3, 185–194 | Zbl
[3] I.T. Habibullin, A.R. Khakimova, M.N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, Journal of Physics A: Mathematical and Theoretical, 49:3 (2016), 035202, 35 pp. | DOI | MR | Zbl
[4] Pavlova E. V., Khabibullin I. T., Khakimova A. R., “Ob odnoi integriruemoi diskretnoi sisteme”, Differentsialnye uravneniya. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 140, VINITI RAN, M., 2017, 30–42
[5] Khabibullin I. T., Khakimova A. R., “Invariantnye mnogoobraziya i pary Laksa dlya integriruemykh nelineinykh tsepochek”, Teoreticheskaya i matematicheskaya fizika, 191:3 (2017), 369–388 | DOI | MR
[6] I.T. Habibullin, A.R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, Journal of Physics A: Mathematical and Theoretical, 50:30 (2017), 305206, 19 pp. | DOI | MR | Zbl
[7] Khabibullin I. T., Khakimova A. R., “O pryamom algoritme postroeniya rekursionnykh operatorov i par Laksa dlya integriruemykh modelei”, TMF, 196:2 (2018), 294–312 | MR
[8] Zakharov V. E., Shabat A. B., “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | MR | Zbl
[9] Zakharov V. E., Shabat A. B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | MR
[10] H.D. Wahlquist, F B. Estabrook, “Prolongation structures of nonlinear evolution equations”, Journal of Mathematical Physics, 16:1 (1975), 1–7 | DOI | MR | Zbl
[11] F.W. Nijhoff, A.J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasgow Mathematical Journal, 43:A (2001), 109–123 | DOI | MR
[12] A.I. Bobenko, Yu.B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notes, 11 (2002), 573–611 | DOI | MR | Zbl
[13] F.W. Nijhoff, “Lax pair for the Adler (lattice Krichever-Novikov) system”, Physics Letters A, 297:1–2 (2002), 49–58 | DOI | MR | Zbl
[14] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, ed. A. B. Shabat, BFAN SSSR, Ufa, 1982, 95–114
[15] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proc. 4th Workshop “Group Analysis of Differential Equations and Integrable Systems”, 2009, 226–242, arXiv: 0902.3954 | MR | Zbl
[16] V.V. Sokolov, Algebraic structures related to integrable differential equations, 2017, arXiv: 1711.10613 | MR
[17] P.D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 67–90 | DOI | MR
[18] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, “Korteweg-deVries equation and generalizations. VI. Methods for exact solution”, Commun. Pure Appl. Math., 27:1 (1974), 97–133 | DOI | MR | Zbl