Mots-clés : cut-off condition, open chain
@article{UFA_2018_10_3_a6,
author = {M. N. Poptsova and I. T. Habibullin},
title = {Algebraic properties of quasilinear two-dimensional lattices connected with integrability},
journal = {Ufa mathematical journal},
pages = {86--105},
year = {2018},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/}
}
TY - JOUR AU - M. N. Poptsova AU - I. T. Habibullin TI - Algebraic properties of quasilinear two-dimensional lattices connected with integrability JO - Ufa mathematical journal PY - 2018 SP - 86 EP - 105 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/ LA - en ID - UFA_2018_10_3_a6 ER -
M. N. Poptsova; I. T. Habibullin. Algebraic properties of quasilinear two-dimensional lattices connected with integrability. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 86-105. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/
[1] E.V. Ferapontov, K.R. Khusnutdinova, “On the integrability of (2+1)-dimensional quasilinear systems”, Commun. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl
[2] E.V. Ferapontov, K.R. Khusnutdinova, S.P. Tsarev, “On a class of three-dimensional integrable Lagrangians”, Commun. Math. Phys., 261 (2006), 225–243 | DOI | MR | Zbl
[3] A.V. Odesskii, V.V. Sokolov, “Integrable (2+1)-dimensional systems of hydrodynamic type”, Theor. Math. Phys., 163 (2010), 549–586 | DOI | Zbl
[4] L.V. Bogdanov, B.G. Konopelchenko, “Grassmannians $Gr(N-1,N+1)$, closed differential ${N-1}$ forms and $N$-dimensional integrable systems”, J. Phys. A: Math. Theor., 46 (2013), 085201 | DOI | MR | Zbl
[5] M.V. Pavlov, Z. Popowicz, “On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems”, SIGMA, 5 (2009), 011, 10 pp. | MR | Zbl
[6] A.K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations”, Theor. Math. Phys., 154:3 (2008), 405–417 | DOI | MR | Zbl
[7] M. Mañas, L.M. Alonso, C. Álvarez-Fernández, “The multicomponent 2D Toda hierarchy: discrete flows and string equations”, Inverse Problems, 25 (2009), 065007 | DOI | MR | Zbl
[8] V.E. Zakharov, S.V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Functional Analysis and Its Applications, 19:2 (1985), 89–101 | DOI | MR | Zbl
[9] I.S. Krasil'shchik, A. Sergyeyev, O.I. Morozov, “Infinitely many nonlocal conservation laws for the $ABC$ equation with $A+B+C\neq 0$”, Calc. Var. PDEs, 55:5 (2016), 123 | DOI | MR | Zbl
[10] V.E. Adler, A.B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theor. Math. Phys., 125 (2000), 1603–1661 (Engl. Transl.) | DOI | MR | Zbl
[11] A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, “The symmetry approach to classification of integrable equations”, What Is Integrability?, Springer Series in Nonlinear Dynamics, ed. V.E. Zakharov, Springer, Berlin–Heidelberg, 1991, 115–184 | DOI | MR | Zbl
[12] A.V. Mikhailov, R.I. Yamilov, “Towards classification of (2+1)-dimensional integrable equations. Integrability conditions: I”, J. Phys. A: Math. Gen., 31 (1998), 6707–6715 | DOI | MR | Zbl
[13] Theoret. and Math. Phys., 144:1 (2005), 907–915 | DOI | MR | MR | Zbl
[14] I.T. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for (2+1)-dimensional lattices”, Physica Scripta, 87:6 (2013), 065005 | DOI | Zbl
[15] I.T. Habibullin, M.N. Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp. | MR | Zbl
[16] A.V. Zhiber, F.Kh. Mukminov, “Kvadratichnye sistemy, simmetrii, kharakteristicheskie i polnye algebry”, Zadachi matematicheskoi fiziki i asimptotiki ikh reshenii, BNTs UrO AN SSSR, Ufa, 1991, 14–32
[17] A.V. Zhiber, R.D. Murtazina, I.T. Khabibullin, A.B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2012, 376 pp.
[18] A.B. Shabat, “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR | Zbl
[19] I.T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theor. Math. Phys., 151:3 (2007), 781–790 | DOI | MR | Zbl
[20] A.V. Zhiber, R.D. Murtazina, I.T. Habibullin, A.B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufa Math. J., 4:3 (2012), 17–85 | MR | Zbl
[21] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56 (2001), 61–101 | DOI | MR | Zbl
[22] S.V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theor. Math. Phys., 182:2, 189–210 | DOI | MR | Zbl
[23] S.V. Smirnov, “Semidiscrete Toda lattices”, Theor. Math. Phys., 172:3 (2012), 1217–1231 | DOI | MR | Zbl
[24] K. Zheltukhin, N. Zheltukhina, E. Bilen, “On a class of Darboux-integrable semidiscrete equations”, Advances in Difference Equations, 2017 (2017), 182 | DOI | MR
[25] K. Zheltukhin, N. Zheltukhina, “Semi-discrete hyperbolic equations admitting five dimensional characteristic x-ring”, J. Nonlinear Math. Phys., 23 (2016), 351–367 | DOI | MR
[26] G. Gubbiotti, C. Scimiterna, R.I. Yamilov, Darboux integrability of trapezoidal $H^4$ and $H^6$ families of lattice equations II: General Solutions, 2017, arXiv: 1704.05805 | MR
[27] E.V. Ferapontov, “Laplace transformations of hydrodynamic-type systems in Riemann invariants”, Theor. Math. Phys., 110:1 (1997), 68–77 | DOI | MR | Zbl
[28] A.B. Shabat, R.I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A, 227:1–2 (1997), 15–23 | DOI | MR | Zbl
[29] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), 541–623 | DOI | MR
[30] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR | Zbl
[31] A.V. Zhiber, R.D. Murtazina, “On the characteristic Lie algebras for equations $u_{x y}= f (u, u_x)$”, J. Math. Sci., 151:4 (2008), 3112–3122 | DOI | MR | Zbl
[32] I.T. Khabibullin, E. V. Gudkova, “Algebraicheskii metod klassifikatsii S-integriruemykh diskretnykh modelei”, TMF, 167:3 (2011), 407–419 | DOI
[33] A.U. Sakieva, “The characteristic Lie ring of the Zhiber-Shabat-Tzitzeica equation”, Ufa Math. J., 4:3 (2012), 155–160 | MR | Zbl
[34] D. Millionshchikov, “Lie Algebras of Slow Growth and Klein-Gordon PDE”, Algebr. Represent. Theor., 21:5 (2018), 1037–1069 | DOI | MR | Zbl