Algebraic properties of quasilinear two-dimensional lattices connected with integrability
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 86-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we discuss a classification method for nonlinear integrable equations with three independent variables based on the notion of the integrable reductions. We call an equation integrable if it admits a large class of reductions being Darboux integrable systems of hyperbolic type equations with two independent variables. The most natural and convenient object to be studied in the framework of this scheme is the class of two dimensional lattices generalizing the well-known Toda lattice. In the present article we study the quasilinear lattices of the form \begin{align*} u_{n,xy}=\alpha(u_{n+1} ,u_n,u_{n-1} )u_{n,x}u_{n,y} + \beta(u_{n+1},u_n,u_{n-1})u_{n,x} \\ +\gamma(u_{n+1} ,u_n,u_{n-1} )u_{n,y}+\delta(u_{n+1} ,u_n,u_{n-1}). \end{align*} We specify the coefficients of the lattice assuming that there exist cutting off conditions which reduce the lattice to a Darboux integrable hyperbolic type system of the arbitrarily high order. Under some extra assumption of nondegeneracy we describe the class of the lattices integrable in the above sense. There are new examples in the obtained list of chains.
Keywords: two-dimensional integrable lattice, $x$-integral, integrable reduction, Darboux integrable system, characteristic Lie algebra.
Mots-clés : cut-off condition, open chain
@article{UFA_2018_10_3_a6,
     author = {M. N. Poptsova and I. T. Habibullin},
     title = {Algebraic properties of quasilinear two-dimensional lattices connected with integrability},
     journal = {Ufa mathematical journal},
     pages = {86--105},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/}
}
TY  - JOUR
AU  - M. N. Poptsova
AU  - I. T. Habibullin
TI  - Algebraic properties of quasilinear two-dimensional lattices connected with integrability
JO  - Ufa mathematical journal
PY  - 2018
SP  - 86
EP  - 105
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/
LA  - en
ID  - UFA_2018_10_3_a6
ER  - 
%0 Journal Article
%A M. N. Poptsova
%A I. T. Habibullin
%T Algebraic properties of quasilinear two-dimensional lattices connected with integrability
%J Ufa mathematical journal
%D 2018
%P 86-105
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/
%G en
%F UFA_2018_10_3_a6
M. N. Poptsova; I. T. Habibullin. Algebraic properties of quasilinear two-dimensional lattices connected with integrability. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 86-105. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a6/

[1] E.V. Ferapontov, K.R. Khusnutdinova, “On the integrability of (2+1)-dimensional quasilinear systems”, Commun. Math. Phys., 248 (2004), 187–206 | DOI | MR | Zbl

[2] E.V. Ferapontov, K.R. Khusnutdinova, S.P. Tsarev, “On a class of three-dimensional integrable Lagrangians”, Commun. Math. Phys., 261 (2006), 225–243 | DOI | MR | Zbl

[3] A.V. Odesskii, V.V. Sokolov, “Integrable (2+1)-dimensional systems of hydrodynamic type”, Theor. Math. Phys., 163 (2010), 549–586 | DOI | Zbl

[4] L.V. Bogdanov, B.G. Konopelchenko, “Grassmannians $Gr(N-1,N+1)$, closed differential ${N-1}$ forms and $N$-dimensional integrable systems”, J. Phys. A: Math. Theor., 46 (2013), 085201 | DOI | MR | Zbl

[5] M.V. Pavlov, Z. Popowicz, “On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems”, SIGMA, 5 (2009), 011, 10 pp. | MR | Zbl

[6] A.K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations”, Theor. Math. Phys., 154:3 (2008), 405–417 | DOI | MR | Zbl

[7] M. Mañas, L.M. Alonso, C. Álvarez-Fernández, “The multicomponent 2D Toda hierarchy: discrete flows and string equations”, Inverse Problems, 25 (2009), 065007 | DOI | MR | Zbl

[8] V.E. Zakharov, S.V. Manakov, “Construction of higher-dimensional nonlinear integrable systems and of their solutions”, Functional Analysis and Its Applications, 19:2 (1985), 89–101 | DOI | MR | Zbl

[9] I.S. Krasil'shchik, A. Sergyeyev, O.I. Morozov, “Infinitely many nonlocal conservation laws for the $ABC$ equation with $A+B+C\neq 0$”, Calc. Var. PDEs, 55:5 (2016), 123 | DOI | MR | Zbl

[10] V.E. Adler, A.B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theor. Math. Phys., 125 (2000), 1603–1661 (Engl. Transl.) | DOI | MR | Zbl

[11] A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, “The symmetry approach to classification of integrable equations”, What Is Integrability?, Springer Series in Nonlinear Dynamics, ed. V.E. Zakharov, Springer, Berlin–Heidelberg, 1991, 115–184 | DOI | MR | Zbl

[12] A.V. Mikhailov, R.I. Yamilov, “Towards classification of (2+1)-dimensional integrable equations. Integrability conditions: I”, J. Phys. A: Math. Gen., 31 (1998), 6707–6715 | DOI | MR | Zbl

[13] Theoret. and Math. Phys., 144:1 (2005), 907–915 | DOI | MR | MR | Zbl

[14] I.T. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for (2+1)-dimensional lattices”, Physica Scripta, 87:6 (2013), 065005 | DOI | Zbl

[15] I.T. Habibullin, M.N. Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp. | MR | Zbl

[16] A.V. Zhiber, F.Kh. Mukminov, “Kvadratichnye sistemy, simmetrii, kharakteristicheskie i polnye algebry”, Zadachi matematicheskoi fiziki i asimptotiki ikh reshenii, BNTs UrO AN SSSR, Ufa, 1991, 14–32

[17] A.V. Zhiber, R.D. Murtazina, I.T. Khabibullin, A.B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2012, 376 pp.

[18] A.B. Shabat, “Higher symmetries of two-dimensional lattices”, Phys. Lett. A, 200:2 (1995), 121–133 | DOI | MR | Zbl

[19] I.T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theor. Math. Phys., 151:3 (2007), 781–790 | DOI | MR | Zbl

[20] A.V. Zhiber, R.D. Murtazina, I.T. Habibullin, A.B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufa Math. J., 4:3 (2012), 17–85 | MR | Zbl

[21] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56 (2001), 61–101 | DOI | MR | Zbl

[22] S.V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theor. Math. Phys., 182:2, 189–210 | DOI | MR | Zbl

[23] S.V. Smirnov, “Semidiscrete Toda lattices”, Theor. Math. Phys., 172:3 (2012), 1217–1231 | DOI | MR | Zbl

[24] K. Zheltukhin, N. Zheltukhina, E. Bilen, “On a class of Darboux-integrable semidiscrete equations”, Advances in Difference Equations, 2017 (2017), 182 | DOI | MR

[25] K. Zheltukhin, N. Zheltukhina, “Semi-discrete hyperbolic equations admitting five dimensional characteristic x-ring”, J. Nonlinear Math. Phys., 23 (2016), 351–367 | DOI | MR

[26] G. Gubbiotti, C. Scimiterna, R.I. Yamilov, Darboux integrability of trapezoidal $H^4$ and $H^6$ families of lattice equations II: General Solutions, 2017, arXiv: 1704.05805 | MR

[27] E.V. Ferapontov, “Laplace transformations of hydrodynamic-type systems in Riemann invariants”, Theor. Math. Phys., 110:1 (1997), 68–77 | DOI | MR | Zbl

[28] A.B. Shabat, R.I. Yamilov, “To a transformation theory of two-dimensional integrable systems”, Phys. Lett. A, 227:1–2 (1997), 15–23 | DOI | MR | Zbl

[29] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), 541–623 | DOI | MR

[30] G. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR | Zbl

[31] A.V. Zhiber, R.D. Murtazina, “On the characteristic Lie algebras for equations $u_{x y}= f (u, u_x)$”, J. Math. Sci., 151:4 (2008), 3112–3122 | DOI | MR | Zbl

[32] I.T. Khabibullin, E. V. Gudkova, “Algebraicheskii metod klassifikatsii S-integriruemykh diskretnykh modelei”, TMF, 167:3 (2011), 407–419 | DOI

[33] A.U. Sakieva, “The characteristic Lie ring of the Zhiber-Shabat-Tzitzeica equation”, Ufa Math. J., 4:3 (2012), 155–160 | MR | Zbl

[34] D. Millionshchikov, “Lie Algebras of Slow Growth and Klein-Gordon PDE”, Algebr. Represent. Theor., 21:5 (2018), 1037–1069 | DOI | MR | Zbl