On instability of extremals of potential energy functional
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 77-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to studying the stability and instability of extremals of a potential energy functional. A particular case of this functional is the area type functionals. The potential energy functional is the sum of functionals of area type and of volume density of forces. The potential energy functional is constructed in such way in order to take into consideration the loads on the surface from outside and inside. The stability is defined as the sign-definiteness of the second variation. In this paper we prove the formulae for the first and second variations of the functional. We also prove that the extremal surface can be locally minimal and locally maximal depending on the sign of matrix $G$. Using the $G$-capacity and the second variation of the functional, we obtain the conditions for the instability of the extremals of the potential energy functional. This technique was developed in works by V.M. Miklyukov and V.A. Klyachin. For $G$-parabolic extremal surfaces we prove the degeneracy into the plane. This result is an analogue of the theorems by M. do Carmo and C.K. Peng. By an example of $n$-dmensional surfaces of revolution we demonstrate the formulae for the first and second variations of the functional. We also prove the criteria of stability and instability for $n$-dimensional surfaces of revolution. Similar extremal surfaces arise in applications, in physical problems (e.g. soap films, capillary surfaces, magnetic liquids in a gravitational field with a potential), and the properties of extreme surfaces are used in applied problems (e.g. modeling of awning coverings).
Keywords: the variation of functional, extreme surface, area type functional, volumetric power density functional, functional of potential energy, $G$-capacity, $G$-parabolicity, the stability.
@article{UFA_2018_10_3_a5,
     author = {N. M. Poluboyarova},
     title = {On instability of extremals of potential energy functional},
     journal = {Ufa mathematical journal},
     pages = {77--85},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a5/}
}
TY  - JOUR
AU  - N. M. Poluboyarova
TI  - On instability of extremals of potential energy functional
JO  - Ufa mathematical journal
PY  - 2018
SP  - 77
EP  - 85
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a5/
LA  - en
ID  - UFA_2018_10_3_a5
ER  - 
%0 Journal Article
%A N. M. Poluboyarova
%T On instability of extremals of potential energy functional
%J Ufa mathematical journal
%D 2018
%P 77-85
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a5/
%G en
%F UFA_2018_10_3_a5
N. M. Poluboyarova. On instability of extremals of potential energy functional. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 77-85. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a5/

[1] D. Hoffman, R. Osserman, “The area of generalized gaussian image and the stability of minimal surfaces in $S^n$ and $R^n$”, Math. Ann., 60 (1982), 437–452 | DOI | MR

[2] J.L.Barbosa, M. do Carmo, “Stability of minimal surfaces and eigevalues of the Laplacian”, Math. Z., 173:1 (1980), 13–28 | DOI | MR | Zbl

[3] H.B. Lawson, “Some intrinsic characterizations of minimal surfaces”, J. Analyse Math., 1971:24, 151–161 | MR | Zbl

[4] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, Dokl. AN SSSR, 260:2 (1981), 293–295 | MR | Zbl

[5] J. Simons, “Minimal varieties in riemannian manifolds”, Ann. of Math., 88:1 (1968), 62–105 | DOI | MR | Zbl

[6] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991, 174 pp. | MR

[7] Fomenko A. T., “O skorosti rosta i naimenshikh ob'emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Trudy seminara po vekt. i tenz. analizu, 21, MGU, M., 1985, 3–12

[8] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989, 312 pp.

[9] Klyachin V. A., “O nekotorykh svoistvakh ustoichivykh i neustoichivykh poverkhnostei predpisannoi srednei krivizny”, Izv. RAN. Ser. matem., 70:4 (2006), 77–90 | DOI | MR | Zbl

[10] Klyachin V. A., Miklyukov V. M., “Priznaki neustoichivosti poverkhnostei nulevoi srednei krivizny v iskrivlennykh lorentsevykh proizvedeniyakh”, Matem. sb., 187:11 (1996), 67–88 | DOI | MR | Zbl

[11] Klyachin V. A., Medvedeva N. M., “Ob ustoichivosti ekstremalnykh poverkhnostei nekotorykh funktsionalov tipa ploschadi”, Sibirskie elektronnye matematicheskie izvestiya, 4 (2007), 113–132 | MR | Zbl

[12] M. do Carmo, C. K. Peng, “The stable minimal surfaces in ${\rm R}^3$ are planes”, Bull. (New Ser.) Amer. Math. Soc., 1:6 (1979), 903–906 | DOI | MR | Zbl

[13] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. mat., 55:1 (1991), 206–217 | MR

[14] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp.

[15] Poluboyarova N. M., “Uravneniya ekstremalei funktsionala potentsialnoi energii”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika, 2016, no. 5(36), 60–72 | MR