Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 43-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let a rigid immovable vessel be partially filled with an ideal incompressible stratified fluid. We assume that in an equilibrium state the density of a fluid is a function of the vertical variable $x_3,$ i.e., $\rho_0=\rho_0(x_3).$ In this case the gravity field with constant acceleration $\vec g=-g\vec e_3$ acts on the fluid, here $g>0$ and $\vec e_3$ is unit vector of the vertical axis $Ox_3,$ which is directed opposite to $\vec g.$ Let $\Omega$ be the domain filled with a fluid in equilibrium state, $S$ be rigid wall of the vessel adherent to the fluid, $\Gamma$ be a free surface completely covered with a crumbled ice. As the crumbled ice we mean that on the free surface, weighty particles of some substance float, and these particles do not interact or the interaction is negligible as the free surface oscillates. We should note that in foreign publications, such fluids are frequently called liquids with inertial free surfaces. The problem is studied on the base of an approach connected with application of so-called operator matrices theory. To this end, we introduce Hilbert spaces and some their subspaces, also auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this base, we find sufficient conditions for the existence of a strong (with respect to time variable) solution to the initial-boundary value problem describing the evolution of the hydrosystem.
Keywords: stratification effect in ideal fluids, initial boundary value problem, differential equation in Hilbert space, Cauchy problem, strong solution.
@article{UFA_2018_10_3_a3,
     author = {N. D. Kopachevsky and D. O. Tsvetkov},
     title = {Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice},
     journal = {Ufa mathematical journal},
     pages = {43--58},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a3/}
}
TY  - JOUR
AU  - N. D. Kopachevsky
AU  - D. O. Tsvetkov
TI  - Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice
JO  - Ufa mathematical journal
PY  - 2018
SP  - 43
EP  - 58
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a3/
LA  - en
ID  - UFA_2018_10_3_a3
ER  - 
%0 Journal Article
%A N. D. Kopachevsky
%A D. O. Tsvetkov
%T Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice
%J Ufa mathematical journal
%D 2018
%P 43-58
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a3/
%G en
%F UFA_2018_10_3_a3
N. D. Kopachevsky; D. O. Tsvetkov. Small motions of ideal stratified liquid with a free surface totally covered by a crumbled ice. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 43-58. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a3/

[1] Krauss V. K., Vnutrennie volny, Gidrometeoizdat, L., 1968, 272 pp.

[2] Terner Dzh., Effekty plavuchesti v zhidkostyakh, Mir, M., 1977, 431 pp.

[3] Kamenkovich V. M., Osnovy dinamiki okeana, Gidrometeoizdat, L., 1973, 240 pp.

[4] Miropolskii Yu. Z., Dinamika vnutrennikh gravitatsionnykh voln v okeane, Gidrometeoizdat, L., 1981, 302 pp.

[5] Gabov S. A., Sveshnikov A. G., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986, 288 pp. | MR

[6] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990, 341 pp. | MR

[7] Kopachevskii N. D., Temnov A. N., “Kolebaniya stratifitsirovannoi zhidkosti v basseine proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 26:5 (1986), 734–755 | MR

[8] Kopachevsky N. D., Tsvetkov D. O., “Oscillations of stratificated fluids”, Journal of Math. Sciences (Springer), 164:4 (2010), 574–602 | DOI | MR

[9] Gabov S. A., “Ob odnoi zadache gidrodinamiki idealnoi zhidkosti, svyazannoi s flotatsiei”, Differentsialnye uravneniya, 24:1 (1988), 16–21 | MR | Zbl

[10] Gabov S. A. Sveshnikov A. G., “Matematicheskie zadachi dinamiki flotiruyuschei zhidkosti”, Itogi nauki i tekhniki. Ser. Mat. analiz, 28, 1990, 3–86 | MR | Zbl

[11] Soldatov M. A., Matematicheskie aspekty teorii kolebaniya zhidkosti v basseine, chastichno pokrytym ldom, Dissertatsiya na soisk. uch. step. kandidata fiz. mat. nauk, Kharkov, 2003, 207 pp.

[12] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1990, 341 pp.

[13] Brekhovskii L. M., Goncharov V. V., Vvedenie v mekhaniku sploshnykh sred, Nauka, M., 1982, 336 pp.

[14] Kopachevskii N. D., Abstraktnaya formula Grina i nekotorye ee prilozheniya, OOO «Forma», Simferopol, 2016, 280 pp.

[15] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989, 416 pp.

[16] gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rendiconti del Seminario Matematico della Universita di Padova, 27 (1957), 284–305 | MR | Zbl

[17] Kopachevskii N. D., Integrodifferentsialnye uravneniya Voltera v gilbertovom prostranstve, Spetsialnyi kurs lektsii, FLP «Bondarenko O. A.», Simferopol, 2012, 152 pp.