Fourier method for first order differential equations with involution and groups of operators
Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 11-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study a mixed problem for a first-order differential equation with an involution. It is written by means of a differential operator with an involution acting in the space functions square integrable on a finite interval. We construct a similarity transform of this operator in an operator being an orthogonal direct sum of an operator of finite rank and operators of rank 1. The method of our study is the method of similar operators. Theorem on similarity serves as the basis for constructing groups of operators, whose generator is the original operator. We write out asymptotic formulae for groups of operators. The constructed group allows us to introduce the notion of a mild solution, and also to describe the mild solutions to the considered problem. This serves to justify the Fourier method. Almost periodicity of bounded mild solutions is established. The proof of almost periodicity is based on the asymptotic representation of the spectrum of a differential operator with an involution.
Keywords: method of similar operator, spectrum, mixed problem, group of operators, differential operator with involution.
@article{UFA_2018_10_3_a1,
     author = {A. G. Baskakov and N. B. Uskova},
     title = {Fourier method for first order differential equations with involution and groups of operators},
     journal = {Ufa mathematical journal},
     pages = {11--34},
     year = {2018},
     volume = {10},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a1/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - N. B. Uskova
TI  - Fourier method for first order differential equations with involution and groups of operators
JO  - Ufa mathematical journal
PY  - 2018
SP  - 11
EP  - 34
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a1/
LA  - en
ID  - UFA_2018_10_3_a1
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A N. B. Uskova
%T Fourier method for first order differential equations with involution and groups of operators
%J Ufa mathematical journal
%D 2018
%P 11-34
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a1/
%G en
%F UFA_2018_10_3_a1
A. G. Baskakov; N. B. Uskova. Fourier method for first order differential equations with involution and groups of operators. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 11-34. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a1/

[1] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp.

[2] Burlutskaya M. Sh., Khromov A. P., “Metod Fure v smeshannoi zadache dlya uravneniya s chastnymi proizvodnymi pervogo poryadka s involyutsiei”, Zh. vychisl. matem. i matem. fiz., 51:12 (2011), 2233–2246 | MR | Zbl

[3] Burlutskaya M. Sh., Khromov A. P., “Smeshannye zadachi dlya giperbolicheskikh uravnenii pervogo poryadka s involyutsiei”, Doklady RAN, 441:2 (2011), 151–154

[4] Burlutskaya M. Sh., “O smeshannoi zadache dlya uravneniya s chastnymi proizvodnymi pervogo poryadka s involyutsiei i s periodicheskimi kraevymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 54:1 (2014), 3–12 | DOI | MR | Zbl

[5] Burlutskaya M. Sh., Khromov A. P., “Smeshannaya zadacha dlya prosteishego giperbolicheskogo uravneniya pervogo poryadka s involyutsiei”, Izv. Sarat. un-ta. Nov. seriya. Ser. Matematika, Mekhanika, Informatika, 14:1 (2014), 10–20 | MR | Zbl

[6] Kritskov L. V., Sarsenbi A. M., “Spektralnye svoistva odnoi nelokalnoi zadachi dlya differentsialnogo uravneniya vtorogo poryadka s involyutsiei”, Differents. uravneniya, 51:7 (2015), 990–996 | DOI | Zbl

[7] Kritskov L. V., Sarsenbi A. M., “Basicity in $L_p$ of root functions for differential equations with involution”, Electr. J. Differ. Equat., 278 (2015), 1–9 | MR

[8] Kritskov L. V., Sarsenbi A. M., “Bazisnost Rissa sistemy kornevykh funktsii dlya operatora vtorogo poryadka s involyutsiei”, Differents. uravneniya, 53:1 (2017), 35–48 | DOI | Zbl

[9] Wiener J., Aftabizadeh A. R., “Boundary value problems for differential equations with reflection of the argument”, Intern. J. Math. Math. Sci., 8:1 (1985), 151–163 | DOI | MR | Zbl

[10] Piao D., “Periodic and almost periodic solutions for differential equations with reflection of the argument”, Nonlinear Anal., 57:4 (2004), 633–637 | DOI | MR | Zbl

[11] Cabada A., Tojo F. A. F., “Existence results for a linear equations with reflection, non-constant coefficient and periodic boundary conditions”, J. Math. Anal. Appl., 412:1 (2014), 529–546 | DOI | MR | Zbl

[12] Cabada A., Tojo F. A. F., “Solutions and Green's function of the first order linear equation with reflection and initial conditions”, Boundary Value Problems, 99 (2014), 1–16 | MR

[13] Watkins W., “Asymptotic properties of differential equations with involutions”, Int. J. Pure. Appl. Math., 44:4 (2008), 485–492 | MR | Zbl

[14] Kopzhassarova A. A., Lukashov A. L., Sarsenbi A. M., “Spectral properties of non-self-adjoint perturbations for a spectral problem with involution”, Abstr. Appl. Anal., 2012, 590781, 5 pp. | MR | Zbl

[15] Kopzhassarova A. A., Sarsenbi A. M., “Basis properties of eigenfunctions of second-order differential operators with involution”, Abstr. Appl. Anal., 2012, 576843, 6 pp. | MR | Zbl

[16] Sadybekov M. A., Sarsenbi A. M., “Kriterii bazisnosti sistemy sobstvennykh funktsii operatora kratkogo differentsirovaniya s involyutsiei”, Differents. uravneniya, 48:8 (2012), 1126–1132 | Zbl

[17] Baskakov A. G., Krishtal I. A., Romanova E. Yu., “Spectral analysis of a differential operator with an involution”, J. Evolut. Equat., 17 (2017), 669–684 | DOI | MR | Zbl

[18] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR

[19] Baskakov A. G., “Teorema o rasscheplenii operatora i nekotorye smezhnye voprosy analiticheskoi teorii vozmuschenii”, Izv. AN SSSR. Ser. matem., 50:3 (1986), 435–457 | MR

[20] Baskakov A. G., “Spektralnyi analiz vozmuschennykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Ser. matem., 54:4 (1994), 3–32

[21] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI | MR | Zbl

[22] Baskakov A. G., Polyakov D. M., “Metod podobnykh operatorov v spektralnom analize operatora Khilla s negladkim potentsialom”, Matem sb., 208:1 (2017), 3–47 | DOI | MR | Zbl

[23] Kalman R. E., Bucy R. S., “New results in linear filtering and prediction theory”, Trans. ASMI. Ser. D.J. Basic Eng., 1961:86, 95–108 | MR

[24] Przeworska-Rolewicz D., Equations with transformed argument: Algebraic approach, Amsterdam–Warsawa, 1973, 354 pp. | MR

[25] Pliss V. A., Nelokalnye problemy teorii kolebanii, Nauka, M., 1964, 367 pp.

[26] Wu J., Theory and Applications of Partial Functional Differential Equations, New York, 1996, 412 pp. | MR

[27] Arendt W., Betty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Birkhäuser/Springer Basel AG, Basel, 2011, 412 pp. | MR | Zbl

[28] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp.

[29] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Izdatelstvo inostrannoi literatury, M., 1962, 830 pp.

[30] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equation, Springer-Verlag, New-York, 2000, 586 pp. | MR

[31] Baskakov A. G., Didenko V. B., “Spektralnyi analiz differentsialnykh operatorov s neogranichennymi periodicheskimi koeffitsientami”, Differents. uravneniya, 51:3 (2015), 323–341 | DOI | Zbl

[32] Baskakov A. G., Kabantsova L. Yu., Kostrub I. D., Smagina T. I., “Lineinye differentsialnye operatory i operatornye matritsy vtorogo poryadka”, Differents. uravneniya, 53:1 (2017), 10–19 | DOI | Zbl

[33] Baskakov A. G., “Spektralnye kriterii pochti periodichnosti reshenii funktsionalnykh uravnenii”, Matem. zametki, 24:2 (1978), 195–206

[34] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izdatelstvo MGU, M., 1978, 204 pp.

[35] Baskakov A. G., “Issledovanie lineinykh differentsialnykh uravnenii metodami spektralnoi teorii raznostnykh operatorov i lineinykh otnoshenii”, UMN, 68:1(409) (2013), 77–128 | DOI | MR | Zbl

[36] Baskakov A. G., “Garmonicheskii i spektralnyi analiz operatorov s ogranichennymi stepenyami i ogranichennykh polugrupp operatorov na banakhovom prostranstve”, Matem. zametki, 98:2 (2015), 174–190 | DOI | MR

[37] Baskakov A. G., “Otsenki funktsii Grina i parametrov eksponentsialnoi dikhotomii giperbolicheskoi polugruppy operatorov i lineinykh otnoshenii”, Matem. sb., 205:8 (2015), 23–62 | DOI

[38] Polyakov D. M., “Spektralnyi analiz differentsialnogo operatora chetvertogo poryadka s periodicheskimi i antiperiodicheskimi kraevymi usloviyami”, Algebra i Analiz, 27:5 (2015), 117–152

[39] Uskova N. B., “O spektralnykh svoistvakh operatora Shturma-Liuvillya s matrichnym potentsialom”, Ufimsk. matem. zhurn., 7:3 (2015), 88–99 | MR

[40] Uskova N. B., “O spektralnykh svoistvakh odnogo differentsialnogo operatora vtorogo poryadka s matrichnym potentsialom”, Differents. uravneniya, 52:5 (2016), 557–567 | DOI | MR | Zbl

[41] Garkavenko G. V., Uskova N. B., “Spektralnyi analiz odnogo klassa raznostnykh operatorov s rastuschim potentsialom”, Izv. Sarat. un-ta. Nov. seriya. Ser. Matematika, Mekhanika, Informatika, 16:4 (2016), 395–402 | MR | Zbl

[42] Garkavenko G. V., Uskova N. B., “Metod podobnykh operatorov v issledovanii spektralnykh svoistv raznostnykh operatorov s rastuschim potentsialom”, Sib. elektron. matem. izv., 14 (2017), 673–689 | MR | Zbl

[43] Baskakov A. G., “Otsenki elementov obratnykh matrits i spektralnyi analiz lineinykh operatorov”, Izv. RAN. Ser. matem., 61:6 (1997), 3–26 | DOI | MR | Zbl

[44] Baskakov A. G., Krishtal I. A., “Memory estimation of inverse operators”, J. Funct. Anal., 2014, 2551–2605 | MR | Zbl

[45] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, v. I, Izdatelstvo inostrannoi literatury, M., 1962, 896 pp.

[46] Baskakov A. G., Uskova N. B., “Obobschennyi metod Fure dlya sistem differentsialnykh uravnenii pervogo poryadka s involyutsiei”, Differents. uravneniya, 54:2 (2018), 276–280 | DOI | Zbl

[47] Baskakov A. G., Uskova N. B., “Spektralnyi analiz differentsialnykh operatorov s involyutsiei i gruppy operatorov”, Differents. uravneniya, 54:9 (2018), 1287–1291 | DOI

[48] A.G. Baskakov, I.A. Krishtal, N.B. Uskova, “Linear differential operator with an involution as a generator of an operator group”, Operators and Matrices, 12:3 (2018), 723–756 | DOI | MR | Zbl