@article{UFA_2018_10_3_a0,
author = {A. S. Asylgareev},
title = {On applying comparison theorems to studying stability with probability 1 of stochastic differential equations},
journal = {Ufa mathematical journal},
pages = {3--10},
year = {2018},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a0/}
}
TY - JOUR AU - A. S. Asylgareev TI - On applying comparison theorems to studying stability with probability 1 of stochastic differential equations JO - Ufa mathematical journal PY - 2018 SP - 3 EP - 10 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a0/ LA - en ID - UFA_2018_10_3_a0 ER -
A. S. Asylgareev. On applying comparison theorems to studying stability with probability 1 of stochastic differential equations. Ufa mathematical journal, Tome 10 (2018) no. 3, pp. 3-10. http://geodesic.mathdoc.fr/item/UFA_2018_10_3_a0/
[1] Asylgareev A. S., Nasyrov F. S., “O teoremakh sravneniya i ustoichivosti s veroyatnostyu 1 odnomernykh stokhasticheskikh differentsialnykh uravnenii”, Sibirskii matematicheskii zhurnal, 57:5 (2016), 969–977 | MR | Zbl
[2] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo Universiteta, K., 1961, 216 pp.
[3] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 448 pp.
[4] T. Yamada, “On a comparison theorem for solutions of stochastic differential equations and its applications”, J. Math. Kyoto Univ., 13:3 (1973), 497–512 | DOI | MR | Zbl
[5] C. Geib, R. Manthey, “Comparison theorems for stochastic differential equations in finite and infinite dimensions”, Stochastic Processes and their Applications, 53:1 (1994), 23–35 | DOI | MR
[6] S. Kotelenez, “Comparison methods for a class of function-valued stochastic partial differential equations”, Probab. Theory Related Fields, 93:1 (1992), 1–19 | DOI | MR | Zbl
[7] P. Peng, X. Zhu, “Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations”, Stochastic Processes and their Applications, 116:3 (2006), 370–380 | DOI | MR | Zbl
[8] G.L. O'Brien, “A new comparison theorem for solutions of stochastic differential equations”, Stochastics, 13:3 (1973), 497–512 | MR
[9] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 370 pp.
[10] Kushner G. Dzh., Stokhasticheskaya ustoichivost i upravlenie, Mir, M., 1969, 220 pp.
[11] X. Mao, Exponential Stability of Stochastic Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics Series, Marcel Dekker, Inc., 1994, 328 pp. | MR | Zbl
[12] Nasyrov F. S., Lokalnye vremena, simmetrichnye integraly i stokhasticheskii analiz, Fizmatlit, M., 2011, 212 pp.
[13] Asylgareev A. S., “O sravnenii reshenii odnorodnykh stokhasticheskikh differentsialnykh uravnenii”, Materialy Mezhdunarodnogo molodezhnogo nauchnogo foruma «LOMONOSOV-2017», MAKS Press, M., 2017
[14] Vasileva A. B., Nefedov N. N., Teoremy sravneniya. Metod differentsialnykh neravenstv Chaplygina, Fiz. Fak. MGU, 2007, 9 pp.