Mots-clés : 2-variable Hermite polynomials, 2-variable Legendre polynomials, 3-variable Hermite-Bernoulli-Legendre polynomials, summation formulae
@article{UFA_2018_10_2_a8,
author = {N. U. Khan and T. Usman},
title = {Certain generating functions of {Hermite{\textendash}Bernoulli{\textendash}Legendre} polynomials},
journal = {Ufa mathematical journal},
pages = {118--126},
year = {2018},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a8/}
}
N. U. Khan; T. Usman. Certain generating functions of Hermite–Bernoulli–Legendre polynomials. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 118-126. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a8/
[1] L.C. Andrews, Special functions for engineer and mathematician, Macmillan Co., New York, 1985 | MR
[2] T.M. Apostol, “On the Lerch zeta function”, Pacific. J. Math., 1:2 (1951), 161–167 | DOI | MR | Zbl
[3] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynomes d'Hermite, Gauthier-Villars, Paris, 1926
[4] E.T. Bell, “Exponential polynomials”, Ann. Math., 35:2 (1934), 258–277 | DOI | MR
[5] G. Dattoli, “Summation formulae of special functions and multivariable Hermite polynomials”, Nuovo Cimento Soc. Ital. Fis. B, 119:5 (2004), 479–488 | MR
[6] G. Dattoli, “Monomility, orthogonal and pseudo-orthogonal polynomials”, Inter. Math. Forum, 13:1 (2006), 603–616 | DOI | MR | Zbl
[7] G. Dattoli, “Generalized polynomials, operational identities and their application”, J. Comput. Appl. Math., 118:1-2 (2000), 111-123 | DOI | MR | Zbl
[8] G. Dattoli, P.E. Ricci, C. Cesarano, “A note on Legendre polynomials”, Int. J. Nonl. Sci. Numer. Simul., 2:4 (2001), 365–370 | MR | Zbl
[9] G. Dattoli, S. Lorenzutta, C. Cesarano, “Finite sums and generalized forms of Bernoulli polynomials”, Rend. Mat. Appl. Ser. VII, 19:3 (1999), 385–391 | MR | Zbl
[10] G. Dattoli, A. Torre, S. Lorenzutta, C. Cesarano, “Generalized polynomials and operational identities”, Atti. Accademia. Sci. Torino Cl. Sci. Fis. Mat. Natur., 134 (2000), 231–249 | MR
[11] H.W. Gould, A.T. Hopper, “Operational formulas connected with two generalization of Hermite polynomials”, Duke Math. J., 29:1 (1962), 51–63 | DOI | MR | Zbl
[12] M.A. Pathan, “A new class of generalized Hermite-Bernoulli polynomials”, Georgian Math. J., 19:3 (2012), 559-573 | DOI | MR | Zbl
[13] M.A. Pathan, W.A. Khan, “Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials”, Mediterr. J. Math., 12:3 (2015), 679–695 | DOI | MR | Zbl
[14] E.D. Rainville, Special functions, Chelsea Publishing Company, New York, 1971 | MR | Zbl
[15] H.M. Srivastava, H.L. Manocha, A Treatise on generating functions, John Wiley and sons, New York, 1984 | MR | Zbl
[16] H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, 2012 | MR | Zbl