Certain generating functions of Hermite–Bernoulli–Legendre polynomials
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 118-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The special polynomials of more than one variable provide new means of analysis for the solutions of a wide class of partial differential equations often encountered in physical problems. Most of the special function of mathematical physics and their generalization have been suggested by physical problems. It turns out very often that the solution of a given problem in physics or applied mathematics requires the evaluation of an infinite sum involving special functions. Problems of this type arise, e.g., in the computation of the higher-order moments of a distribution or while calculating transition matrix elements in quantum mechanics. Motivated by their importance and potential for applications in a variety of research fields, recently, numerous polynomials and their extensions have been introduced and studied. In this paper, we introduce a new class of generating functions for Hermite-Bernoulli-Legendre polynomials and study certain implicit summation formulas by using different analytical means and applying generating function. We also introduce bilateral series associated with a newly-introduced generating function by appropriately specializing a number of known or new partly unilateral and partly bilateral generating functions. The results presented here, being very general, are pointed out to be specialized to yield a number of known and new identities involving relatively simpler and familiar polynomials.
Keywords: Generalized Bernoulli numbers and polynomials, generating functions.
Mots-clés : 2-variable Hermite polynomials, 2-variable Legendre polynomials, 3-variable Hermite-Bernoulli-Legendre polynomials, summation formulae
@article{UFA_2018_10_2_a8,
     author = {N. U. Khan and T. Usman},
     title = {Certain generating functions of {Hermite{\textendash}Bernoulli{\textendash}Legendre} polynomials},
     journal = {Ufa mathematical journal},
     pages = {118--126},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a8/}
}
TY  - JOUR
AU  - N. U. Khan
AU  - T. Usman
TI  - Certain generating functions of Hermite–Bernoulli–Legendre polynomials
JO  - Ufa mathematical journal
PY  - 2018
SP  - 118
EP  - 126
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a8/
LA  - en
ID  - UFA_2018_10_2_a8
ER  - 
%0 Journal Article
%A N. U. Khan
%A T. Usman
%T Certain generating functions of Hermite–Bernoulli–Legendre polynomials
%J Ufa mathematical journal
%D 2018
%P 118-126
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a8/
%G en
%F UFA_2018_10_2_a8
N. U. Khan; T. Usman. Certain generating functions of Hermite–Bernoulli–Legendre polynomials. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 118-126. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a8/

[1] L.C. Andrews, Special functions for engineer and mathematician, Macmillan Co., New York, 1985 | MR

[2] T.M. Apostol, “On the Lerch zeta function”, Pacific. J. Math., 1:2 (1951), 161–167 | DOI | MR | Zbl

[3] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynomes d'Hermite, Gauthier-Villars, Paris, 1926

[4] E.T. Bell, “Exponential polynomials”, Ann. Math., 35:2 (1934), 258–277 | DOI | MR

[5] G. Dattoli, “Summation formulae of special functions and multivariable Hermite polynomials”, Nuovo Cimento Soc. Ital. Fis. B, 119:5 (2004), 479–488 | MR

[6] G. Dattoli, “Monomility, orthogonal and pseudo-orthogonal polynomials”, Inter. Math. Forum, 13:1 (2006), 603–616 | DOI | MR | Zbl

[7] G. Dattoli, “Generalized polynomials, operational identities and their application”, J. Comput. Appl. Math., 118:1-2 (2000), 111-123 | DOI | MR | Zbl

[8] G. Dattoli, P.E. Ricci, C. Cesarano, “A note on Legendre polynomials”, Int. J. Nonl. Sci. Numer. Simul., 2:4 (2001), 365–370 | MR | Zbl

[9] G. Dattoli, S. Lorenzutta, C. Cesarano, “Finite sums and generalized forms of Bernoulli polynomials”, Rend. Mat. Appl. Ser. VII, 19:3 (1999), 385–391 | MR | Zbl

[10] G. Dattoli, A. Torre, S. Lorenzutta, C. Cesarano, “Generalized polynomials and operational identities”, Atti. Accademia. Sci. Torino Cl. Sci. Fis. Mat. Natur., 134 (2000), 231–249 | MR

[11] H.W. Gould, A.T. Hopper, “Operational formulas connected with two generalization of Hermite polynomials”, Duke Math. J., 29:1 (1962), 51–63 | DOI | MR | Zbl

[12] M.A. Pathan, “A new class of generalized Hermite-Bernoulli polynomials”, Georgian Math. J., 19:3 (2012), 559-573 | DOI | MR | Zbl

[13] M.A. Pathan, W.A. Khan, “Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials”, Mediterr. J. Math., 12:3 (2015), 679–695 | DOI | MR | Zbl

[14] E.D. Rainville, Special functions, Chelsea Publishing Company, New York, 1971 | MR | Zbl

[15] H.M. Srivastava, H.L. Manocha, A Treatise on generating functions, John Wiley and sons, New York, 1984 | MR | Zbl

[16] H.M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, 2012 | MR | Zbl