Approximation of solutions to singular integro-differential equations by Hermite–Fejer polynomials
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 109-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Singular integral and integro-differential equations have a lot of applications and thus were thoroughly studied by domestic and foreign mathematicians since the beginning of 20th century, and by the 70th years the theory of such equations was finally completed. It is known from this theory that the exact solutions to such equations exist only in rarely particular cases, so since that time the approximate methods for solving these equations as well as the techniques of the justification of these methods were developed. Justification of the approximate method means the proof of the existence and the uniqueness of the approximate solution, estimation of its error and the proof of the convergence of the approximate solutions to the exact solution. Moreover, to compare the approximate methods in different aspects, the optimization theory for approximate methods was created. However, sometimes, depending on the particular problem, an important role is also played by the form of an approximate solution. For instance, sometimes it is desirable to have an approximate solution as a spline, sometimes, as a polynomial, sometimes it is enough to have just the approximate values of the solution at the nodes. It is quite obvious that depending on the kind of the approximate solution the technique of the justification of the method should be chosen. Unfortunately, there are very few of such techniques, that is why the theory of justification of the approximate methods is now intensively studied. In the present work we justify an approximate method for solving singular integro-differential equations in the periodic case. An approximate solution is sought as a trigonometric interpolation Hermite-Fejer polynomials. For justification of this approximate method, the technique developed by B.G. Gabdulkhaev and his pupils is used. The convergence of the method is proved and the errors of the approximate solutions are estimated.
Keywords: singular integro-differential equations, justification of the approximate methods.
@article{UFA_2018_10_2_a7,
     author = {A. I. Fedotov},
     title = {Approximation of solutions to singular integro-differential equations by {Hermite{\textendash}Fejer} polynomials},
     journal = {Ufa mathematical journal},
     pages = {109--117},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a7/}
}
TY  - JOUR
AU  - A. I. Fedotov
TI  - Approximation of solutions to singular integro-differential equations by Hermite–Fejer polynomials
JO  - Ufa mathematical journal
PY  - 2018
SP  - 109
EP  - 117
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a7/
LA  - en
ID  - UFA_2018_10_2_a7
ER  - 
%0 Journal Article
%A A. I. Fedotov
%T Approximation of solutions to singular integro-differential equations by Hermite–Fejer polynomials
%J Ufa mathematical journal
%D 2018
%P 109-117
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a7/
%G en
%F UFA_2018_10_2_a7
A. I. Fedotov. Approximation of solutions to singular integro-differential equations by Hermite–Fejer polynomials. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 109-117. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a7/

[1] Lozinskii S.M., “Ob interpolyatsionnom protsesse Fejer'a”, DAN SSSR, 24:4 (1939), 318–321 | Zbl

[2] Zeel E.O., “O trigonometricheskom $(0,p,q)$-interpolirovanii”, Izv. vuzov. Matematika, 1970, no. 3, 27–35 | MR | Zbl

[3] Zeel E.O., “O kratnom trigonometricheskom interpolirovanii”, Izv. vuzov. Matematika, 1974, no. 3, 43–51 | MR | Zbl

[4] Kish O., “O trigonometricheskom $(0,r)$-interpolirovanii”, Acta math. Acad. scient. Hung., 11:3–4 (1960), 243–276 | MR

[5] A. Sharma, A.K. Varma, “Trigonometric interpolation”, Duke math. j., 32:2 (1965), 341–357 | DOI | MR | Zbl

[6] A.K. Varma, “Trigonometric interpolation”, J. math. analysis and applic., 28:3 (1969), 652–659 | DOI | MR | Zbl

[7] H.E. Salzer, “New formulas for trigonometric interpolation”, J. math and phys., 39:1 (1960), 83–96 | DOI | MR | Zbl

[8] Gabdulkhaev B.G., “Kvadraturnye formuly s kratnymi uzlami dlya singulyarnykh integralov”, DAN SSSR, 227:3 (1976), 531–534 | MR | Zbl

[9] Soliev Yu., “O kvadraturnykh i kubaturnykh formulakh dlya singulyarnykh integralov s yadrami Koshi”, Izv. vuzov. Matematika, 1977, no. 3, 108–122 | MR

[10] Soliev Yu., “Ob interpolyatsionnykh kubaturnykh formulakh s kratnymi uzlami dlya singulyarnykh integralov”, Izv. vuzov. Matematika, 1977, no. 9, 122–126 | MR | Zbl

[11] Soliev Yu., Kvadraturnye i kubaturnye formuly s kratnymi uzlami dlya singulyarnykh integralov, Diss. ... kand. fiz.-mat. nauk, KGU, Kazan, 1978, 124 pp. | MR

[12] Fedotov A.I., Approksimatsiya reshenii odnogo klassa singulyarnykh intgro-differentsialnykh uravnenii trigonometricheskimi polinomami s kratnymi uzlami, Dep. v VINITI No 2483-B86, Kazan. un-t, Kazan, 1986, 12 pp.

[13] Fedotov A.I., “Ob odnom podkhode k postroeniyu kvadraturno-raznostnogo metoda resheniya singulyarnykh integro-differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 978–986

[14] Gabdulkhaev B.G., “Approksimatsiya v $H$-prostranstvakh i prilozheniya”, DAN SSSR, 223:6 (1975), 1293–1296 | MR | Zbl

[15] Gabdulkhaev B.G., “Konechnomernye approksimatsii singulyarnykh integralov i pryamye metody resheniya osobykh integralnykh i integro-differentsialnykh uravnenii”, Itogi nauki i tekhniki. Ser. matem. analiz, 18, VINITI, M., 1980, 251–307

[16] Gabdulkhaev B.G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980, 232 pp. | MR

[17] Gakhov F.D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[18] Gabdulkhaev B.G., “Nekotorye voprosy terii priblizhennykh metodov, IV”, Izv. vuzov. Matematika, 1971, no. 6, 15–23 | Zbl

[19] Gabdulkhaev B.G., “Pryamye metody resheniya nekotorykh operatornykh uravnenii, I-IV”, Izv. vuzov. Matematika, 1971, no. 11, 33–44 ; Изв. вузов. Математика, 1971, No 12, 28–38 ; Изв. вузов. Математика, 1972, No 3, 18–31 ; Изв. вузов. Математика, No 4 1972, 32–43 | Zbl | MR | Zbl | Zbl

[20] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR