Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 93-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish the uniform convergence inside an arbitrary interval ${ (a, b) \subset [0, \pi] }$ for the values of the Lagrange–Sturm–Liouville operators for functions in a class defined by one-side moduli of continuity and oscillations. Outside this interval, the sequence of values of the Lagrange–Sturm–Liouville operators may diverge. The conditions describing this functional class contain a restriction only on the rate and magnitude of the increasing (or decreasing) of the continuous function. Each element of the proposed class can decrease (or, respectively, increase) arbitrarily fast. Popular sets of functions satisfying the Dini–Lipschitz condition or the Krylov criterion are proper subsets of this class, even if, under their conditions, the classical modulus of continuity and the variation are replaced by the one-sided ones. We obtain sharp upper bounds for functions and Lebesgue constants of the Lagrange–Sturm–Liouville processes. We establish sufficient conditions of the uniform convergence of the Lagrange–Sturm–Liouville processes in terms of the maximal absolute value of the sum and the maximal sum of the absolute values of the weighted first order differences. We prove the equiboundedness of the sequence of fundamental functions of Lagrange–Sturm–Liouville processes. Three new operators are proposed, which are modifications of the Lagrange–Sturm-Liouville operator and they allow one to approximate uniformly an arbitrary continuous function vanishing at the ends on the segment $ [0, \pi] $. All the results of the work remain valid if the one-sided moduli of continuity and oscillations are replaced by the classical ones.
Keywords: sinc approximation, interpolation functions, uniform approximation.
@article{UFA_2018_10_2_a6,
     author = {A. Yu. Trynin},
     title = {Uniform convergence of {Lagrange{\textendash}Sturm{\textendash}Liouville} processes on one functional class},
     journal = {Ufa mathematical journal},
     pages = {93--108},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a6/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class
JO  - Ufa mathematical journal
PY  - 2018
SP  - 93
EP  - 108
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a6/
LA  - en
ID  - UFA_2018_10_2_a6
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class
%J Ufa mathematical journal
%D 2018
%P 93-108
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a6/
%G en
%F UFA_2018_10_2_a6
A. Yu. Trynin. Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 93-108. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a6/

[1] Natanson G.I., “Ob odnom interpolyatsionnom protsesse”, Uchen. zapiski Leningrad. ped. in-ta im. A.I. Gertsena, 166 (1958), 213–219

[2] Trynin A.Yu., “O raskhodimosti interpolyatsionnykh protsessov Lagranzha po sobstvennym funktsiyam zadachi Shturma-Liuvillya”, Izvestiya vyssh. uch-ykh zavedenii. Matematika, 2010, no. 11, 74–85 | MR | Zbl

[3] Trynin A.Yu., “Ob otsutstvii ustoichivosti interpolirovaniya po sobstvennym funktsiyam zadachi Shturma-Liuvillya”, Izvestiya vyssh. uch-ykh zavedenii. Matematika, 2000, no. 9(460), 60–73 | MR | Zbl

[4] Trynin A.Yu., Teorema otschetov na otrezke i ee obobscheniya, LAP LAMBERT Academic Publishing RU, 2016, 479 pp.

[5] Trynin A.Yu., “Differentsialnye svoistva nulei sobstvennykh funktsii zadachi Shturma-Liuvillya”, Ufimsk. matem. zhurn., 3:4 (2011), 133–143 | MR | Zbl

[6] Trynin A.Yu., “Ob odnoi obratnoi uzlovoi zadache dlya operatora Shturma-Liuvillya”, Ufimsk. matem. zhurn., 5:4 (2013), 116–129 | MR

[7] Kashin B.S. , Saakyan A.A., Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR

[8] Novikov I.Ya. , Stechkin S.B., “Osnovy teorii vspleskov”, Uspekhi matematicheskikh nauk, 53:6(324) (1998), 53–128 | DOI | MR | Zbl

[9] F. Stenger, Numerical Metods Based on Sinc and Analytic Functions, Springer Ser. Comput. Math., 20, Springer-Verlag, N.Y., 1993 | DOI | MR

[10] Dobeshi I., Desyat lektsii po veivletam, «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001

[11] P.L. Butzer, “A retrospective on 60 years of approximation theory and associated fields”, Journal of Approximation Theory, 160 (2009), 3–18 | DOI | MR | Zbl

[12] M. Richardson, L. Trefethen, “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI | MR | Zbl

[13] E. Livne Oren, E. Brandt Achi, “MuST: The multilevel sinc transform”, SIAM J. on Scientific Computing, 33:4 (2011), 1726–1738 | DOI | MR | Zbl

[14] Marwa M. Tharwat, “Sinc approximation of eigenvalues of Sturm—Liouville problems with a Gaussian multiplier”, Calcolo: a quarterly on numerical analysis and theory of computation, 51:3, September (2014), 465–484 | MR

[15] A.Yu. Trynin, V.P. Sklyarov, “Error of sinc approximation of analytic functions on an interval”, Sampling Theory in Signal and Image Processing, 7:3, Sep. (2008), 263–270 | MR | Zbl

[16] Trynin A.Yu., Matematika. Mekhanika, 7, Izd-vo Sarat. un-ta, Saratov, Ob otsenke approksimatsii analiticheskikh funktsii interpolyatsionnym operatorom po sinkam, 124–127 | MR

[17] Trynin A.Yu., “Otsenki funktsii Lebega i formula Nevai dlya sinc-priblizhenii nepreryvnykh funktsii na otrezke”, Sibirskii matematicheskii zhurnal, 48:5 (2007), 1155–1166 | MR | Zbl

[18] Trynin A.Yu., “Kriterii potochechnoi i ravnomernoi skhodimosti sink-priblizhenii nepreryvnykh funktsii na otrezke”, Matematicheskii sbornik, 198:10 (2007), 141–158 | DOI | MR | Zbl

[19] Trynin A.Yu., “Kriterii ravnomernoi skhodimosti sinc-priblizhenii na otrezke”, Izvestiya vyssh. uch-ykh zavedenii. Matematika, 2008, no. 6, 66–78 | MR | Zbl

[20] Trynin A.Yu., “Neobkhodimye i dostatochnye usloviya ravnomernoi na otrezke sink-approksimatsii funktsii ogranichennoi variatsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 288–298 | MR

[21] V.P. Sklyarov, “On the best uniform sinc-approximation on a finite interval”, East Journal on Approximations, 14:2 (2008), 183–192 | MR | Zbl

[22] A. Mohsen, M. El-Gamel, “A sinc-collocation method for the linear Fredholm integro-differential equations”, Z. Angew. Math. Phys., 58:3 (2007), 380–390 | DOI | MR | Zbl

[23] Trynin A.Yu., “O raskhodimosti sink-priblizhenii vsyudu na $(0,\pi)$”, Algebra i analiz, 22:4 (2010), 232–256 | MR

[24] Umakhanov A.Ya., Sharapudinov I.I., “Interpolyatsiya funktsii summami Uittekera i ikh modifikatsiyami: usloviya ravnomernoi skhodimosti”, Vladikavk. matem. zhurn., 18:4 (2016), 61–70 | MR

[25] Trynin A.Yu., “O nekotorykh svoistvakh sink-approksimatsii nepreryvnykh na otrezke funktsii”, Ufimskii matematicheskii zhurnal, 7:4 (2015), 116–132 | MR

[26] Trynin A.Yu., “O neobkhodimykh i dostatochnykh usloviyakh skhodimosti sink-approksimatsii”, Algebra i analiz, 27:5 (2015), 170–194 | MR

[27] Trynin A.Yu., “Priblizhenie nepreryvnykh na otrezke funktsii s pomoschyu lineinykh kombinatsii sinkov”, Izvestiya vyssh. uch-ykh zavedenii. Matematika, 2016, no. 3, 72–81 | MR | Zbl

[28] Trynin A.Yu., “Obobschenie teoremy otschetov Uittekera-Kotelnikova-Shennona dlya nepreryvnykh funktsii na otrezke”, Matematicheskii sbornik, 200:11 (2009), 61–108 | DOI | MR | Zbl

[29] Trynin A.Yu., “Ob operatorakh interpolirovaniya po resheniyam zadachi Koshi i mnogochlenakh Lagranzha-Yakobi”, Izvestiya Rossiiskoi Akademii Nauk. Seriya matematicheskaya, 75:6 (2011), 129–162 | DOI | MR | Zbl

[30] Privalov A.A., Teoriya interpolirovaniya funktsii, Izd-vo Saratovskogo un-ta, Saratov, 1990 | MR

[31] Z.A. Chanturiya, “On uniform convergence of Fourier series”, Math. USSR-Sb., 29:4 (1976), 475–495 | DOI | MR

[32] Golubov B.I., “Sfericheskii skachok funktsii i srednie Bokhnera–Rissa sopryazhennykh kratnykh ryadov i integralov Fure”, Matem. zametki, 91:4 (2012), 506–514 | DOI | Zbl

[33] Golubov B.I., “Ob absolyutnoi skhodimosti kratnykh ryadov Fure”, Matem. zametki, 37:1 (1985), 13–24 | Zbl

[34] Dyachenko M.I., “Ob odnom klasse metodov summirovaniya kratnykh ryadov Fure”, Matematicheskii sbornik, 204:3 (2013), 3–18 | DOI | MR | Zbl

[35] Skopina M.A., Maksimenko I.E., “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR

[36] Dyachenko M.I., “Ravnomernaya skhodimost giperbolicheskikh chastichnykh summ kratnykh ryadov Fure”, Matem. zametki, 76:5 (2004), 723–731 | DOI | MR | Zbl

[37] Ivannikova T.A., Timashova E.V., Shabrov S.A., “O neobkhodimom uslovii minimuma kvadratichnogo funktsionala s integralom Stiltesa i nulevym koeffitsientom pri starshei proizvodnoi na chasti intervala”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2(1) (2013), 3–8 | Zbl

[38] Farkov Yu.A., “O nailuchshem lineinom priblizhenii golomorfnykh funktsii”, Fundament. i prikl. matem., 19:5 (2014), 185–212 | MR

[39] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v. 1, 2, M., 1953