Systems of convolution equations in complex domains
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 78-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the systems of convolution equations in spaces of vector-valued functions of one variable. We define an analogue of the Leontiev interpolating function for such systems, and we provide a series of the properties of this function. In order to study these systems, we introduce a geometric difference of sets and provide its properties. We prove a theorem on the representation of arbitrary vector-valued functions as a series over elementary solutions to the homogeneous system of convolution equations. These results generalize some well-known results by A.F. Leontiev on methods of summing a series of elementary solutions to an arbitrary solution and strengthen the results by I.F. Krasichkov-Ternovskii on summability of a square system of convolution equations. We describe explicitly domains in which a series of elementary solutions converges for arbitrary vector-valued functions. These domains depend on the domains of the vector-valued functions, on the growth of the Laplace transform of the elements in this system, and on the lower bound of its determinant. We adduce examples showing the sharpness of this result. Similar results are obtained for solutions to a homogeneous system of convolution equations, and examples are given in which the series converges in the entire domain of a vector-valued function.
Keywords: Systems of convolution equations, vector-valued functions, Leontiev interpolating function, series of elementary solutions.
@article{UFA_2018_10_2_a5,
     author = {S. G. Merzlyakov},
     title = {Systems of convolution equations in complex domains},
     journal = {Ufa mathematical journal},
     pages = {78--92},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a5/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Systems of convolution equations in complex domains
JO  - Ufa mathematical journal
PY  - 2018
SP  - 78
EP  - 92
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a5/
LA  - en
ID  - UFA_2018_10_2_a5
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Systems of convolution equations in complex domains
%J Ufa mathematical journal
%D 2018
%P 78-92
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a5/
%G en
%F UFA_2018_10_2_a5
S. G. Merzlyakov. Systems of convolution equations in complex domains. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 78-92. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a5/

[1] Krasichkov-Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87:4 (1972), 459–489

[2] Krasichkov-Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88:1 (1972), 3–30 | MR

[3] Krasichkov-Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. III. O rasprostranenii spektralnogo sinteza”, Matem. sb., 88:3 (1972), 331–352

[4] Krasichkov-Ternovskii I.F., “Spektralnyi sintez na sistemakh vypuklykh oblastei”, Matem. sb., 111:1 (1980), 3–41 | MR

[5] Krasichkov-Ternovskii I.F., “Spektralnyi sintez na sistemakh neogranichennykh vypuklykh oblastei”, Matem. sb., 111:3 (1980), 384–401 | MR

[6] Krasichkov-Ternovskii I.F., “Spektralnyi sintez na sistemakh vypuklykh oblastei. Rasprostranenie sinteza”, Matem. sb., 112:1 (1980), 94–114 | MR

[7] Krasichkov-Ternovskii I.F., “Spectral synthesis on a system of unbounded domains starline in a common direction”, Analysis Mathematica, 19:3 (1993), 217–223 | DOI | MR

[8] Krasichkov-Ternovskii I.F., “Fundamentalnyi printsip dlya invariantnykh podprostranstv analiticheskikh funktsii. I”, Matem. sb., 188:2 (1997), 25–56 | DOI | MR

[9] Krasichkov-Ternovskii I. F., “Fundamentalnyi printsip dlya invariantnykh podprostranstv analiticheskikh funktsii. II”, Matem. sb., 188:6 (1997), 57–98 | DOI | MR

[10] Krasichkov-Ternovskii I.F., “Fundamentalnyi printsip dlya invariantnykh podprostranstv analiticheskikh funktsii. III”, Matem. sb., 188:10 (1997), 25–68 | DOI | MR

[11] Leontev A.F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980, 384 pp. | MR

[12] Ibragimov I.I., Metody interpolyatsii funktsii i nekotorye ikh primeneniya, Nauka, M., 1971, 518 pp. | MR

[13] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[14] G. Köte, “Duälitat in der Functionentheorie”, J. reine und angew. Math., 191:1–2 (1953), 30–49 | MR

[15] Napalkov V.V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982, 240 pp. | MR

[16] Leontev A.F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR

[17] Leontev A.F., Obobscheniya ryadov eksponent, Nauka, M., 1981, 320 pp. | MR

[18] Levin B.Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956, 632 pp.