Basis in invariant subspace of analytical functions
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 58-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we study the problem on representing the functions in an invariant subspace of analytic functions on a convex domain in the complex plane. We obtain a sufficient condition for the existence of a basis in the invariant subspace consisting of linear combinations of eigenfunctions and associated functions of differentiation operator in this subspace. The linear combinations are constructed by the system of exponential monomials, whose exponents are partitioned into relatively small groups. We apply the method employing the Leontiev interpolating function. At that, we provide a complete description of the space of the coefficients of the series representing the functions in the invariant subspace. We also find necessary conditions for representing functions in an arbitrary invariant subspace admitting the spectral synthesis in an arbitrary convex domain. We employ the method of constructing special series of exponential polynomials developed by the author.
Keywords: Invariant subspace, basis, exponential monomial, entire function, series of exponentials.
@article{UFA_2018_10_2_a4,
     author = {O. A. Krivosheeva},
     title = {Basis in invariant subspace of analytical functions},
     journal = {Ufa mathematical journal},
     pages = {58--77},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a4/}
}
TY  - JOUR
AU  - O. A. Krivosheeva
TI  - Basis in invariant subspace of analytical functions
JO  - Ufa mathematical journal
PY  - 2018
SP  - 58
EP  - 77
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a4/
LA  - en
ID  - UFA_2018_10_2_a4
ER  - 
%0 Journal Article
%A O. A. Krivosheeva
%T Basis in invariant subspace of analytical functions
%J Ufa mathematical journal
%D 2018
%P 58-77
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a4/
%G en
%F UFA_2018_10_2_a4
O. A. Krivosheeva. Basis in invariant subspace of analytical functions. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 58-77. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a4/

[1] Krasichkov I.F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. Sb., 87(129):4 (1972), 459–489

[2] Krasichkov-Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130):1 (1972), 3–30 | MR

[3] Goldberg A.A., Levin B.Ya., Ostrovskii I.V., “Tselye i meromorfnye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1991, 5–186

[4] Krivosheev A.S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl

[5] Krivosheeva O.A., Krivosheev A.S., “Kriterii spravedlivosti fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz i ego pril., 46:4 (2012), 14–30 | DOI | MR | Zbl

[6] Leontev A.F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR

[7] Krivosheev A.S., “Pochti eksponentsialnyi bazis”, Ufimsk. matem. zhurn., 2:1 (2010), 87–96

[8] Krivosheev A.S., “Bazisy «po otnositelno malym gruppam»”, Ufimsk. matem. zhurn., 2:2 (2010), 67–89 | Zbl

[9] Krivosheev A.S., “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimsk. matem. zhurn., 4:1 (2012), 88–106

[10] Krivosheev A.S., Krivosheeva O.A., “Bazis v invariantnom podprostranstve analiticheskikh funktsii”, Matem. Sb., 204:12 (2013), 49–104 | DOI | MR | Zbl

[11] Krivosheev A.S., Krivosheeva O.A., “Fundamentalnyi printsip i bazis v invariantnom podprostranstve”, Matem. zametki, 99:5 (2016), 684–697 | DOI | MR | Zbl

[12] Krivosheev A.S., Krivosheeva O.A., “Bazis v invariantnom podprostranstve tselykh funktsii”, Algebra i analiz, 27:2 (2015), 132–195

[13] Krivosheev A.S., Krivosheeva O.A., “Zamknutost mnozhestva summ ryadov Dirikhle”, Ufimsk. matem. zhurn., 5:3 (2013), 96–120

[14] Krivosheeva O.A., Krivosheev A.S., “Predstavlenie funktsii iz invariantnogo podprostranstva s pochti veschestvennym spektrom”, Algebra i analiz, 29:4 (2017), 82–139 | MR

[15] Krivosheev A.S., “Predstavlenie reshenii odnorodnogo uravneniya svertki v vypuklykh oblastyakh prostranstva $\mathbb{C}^n$”, Izv. RAN. Ser. matem., 58:1 (1994), 71–91 | MR | Zbl

[16] Krivosheev A.S., “Interpolyatsiya s otsenkami v $\mathbb{C}^n$ i ee primenenie”, Matem. sb., 192:9 (2001), 39–84 | DOI | MR | Zbl

[17] Leontev A.F., Ryady eksponent, Nauka, M., 1976 | MR

[18] Krivosheeva O.A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR

[19] Leontev A.F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[20] Napalkov V.V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[21] Levin B.Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[22] Krivosheeva O.A., “Oblast skhodimosti ryadov eksponentsialnykh mnogochlenov”, Ufimsk. matem. zhurn., 5:4 (2013), 84–90 | MR

[23] Krivosheev A.S., “Invariantnye podprostranstva v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Ufimsk. matem. zhurn., 1:2 (2009), 53–74

[24] Krivosheev A.S., “Invariantnye podprostranstva v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Ufimsk. matem. zhurn., 1:3 (2009), 65–86 | Zbl

[25] Krivosheev A.S., “Kriterii analiticheskogo prodolzheniya funktsii iz glavnykh invariantnykh podprostranstv v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Algebra i analiz, 22:4 (2010), 137–197 | MR