@article{UFA_2018_10_2_a4,
author = {O. A. Krivosheeva},
title = {Basis in invariant subspace of analytical functions},
journal = {Ufa mathematical journal},
pages = {58--77},
year = {2018},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a4/}
}
O. A. Krivosheeva. Basis in invariant subspace of analytical functions. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 58-77. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a4/
[1] Krasichkov I.F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. Sb., 87(129):4 (1972), 459–489
[2] Krasichkov-Ternovskii I.F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88(130):1 (1972), 3–30 | MR
[3] Goldberg A.A., Levin B.Ya., Ostrovskii I.V., “Tselye i meromorfnye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1991, 5–186
[4] Krivosheev A.S., “Fundamentalnyi printsip dlya invariantnykh podprostranstv v vypuklykh oblastyakh”, Izv. RAN. Ser. matem., 68:2 (2004), 71–136 | DOI | MR | Zbl
[5] Krivosheeva O.A., Krivosheev A.S., “Kriterii spravedlivosti fundamentalnogo printsipa dlya invariantnykh podprostranstv v ogranichennykh vypuklykh oblastyakh kompleksnoi ploskosti”, Funkts. analiz i ego pril., 46:4 (2012), 14–30 | DOI | MR | Zbl
[6] Leontev A.F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR
[7] Krivosheev A.S., “Pochti eksponentsialnyi bazis”, Ufimsk. matem. zhurn., 2:1 (2010), 87–96
[8] Krivosheev A.S., “Bazisy «po otnositelno malym gruppam»”, Ufimsk. matem. zhurn., 2:2 (2010), 67–89 | Zbl
[9] Krivosheev A.S., “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimsk. matem. zhurn., 4:1 (2012), 88–106
[10] Krivosheev A.S., Krivosheeva O.A., “Bazis v invariantnom podprostranstve analiticheskikh funktsii”, Matem. Sb., 204:12 (2013), 49–104 | DOI | MR | Zbl
[11] Krivosheev A.S., Krivosheeva O.A., “Fundamentalnyi printsip i bazis v invariantnom podprostranstve”, Matem. zametki, 99:5 (2016), 684–697 | DOI | MR | Zbl
[12] Krivosheev A.S., Krivosheeva O.A., “Bazis v invariantnom podprostranstve tselykh funktsii”, Algebra i analiz, 27:2 (2015), 132–195
[13] Krivosheev A.S., Krivosheeva O.A., “Zamknutost mnozhestva summ ryadov Dirikhle”, Ufimsk. matem. zhurn., 5:3 (2013), 96–120
[14] Krivosheeva O.A., Krivosheev A.S., “Predstavlenie funktsii iz invariantnogo podprostranstva s pochti veschestvennym spektrom”, Algebra i analiz, 29:4 (2017), 82–139 | MR
[15] Krivosheev A.S., “Predstavlenie reshenii odnorodnogo uravneniya svertki v vypuklykh oblastyakh prostranstva $\mathbb{C}^n$”, Izv. RAN. Ser. matem., 58:1 (1994), 71–91 | MR | Zbl
[16] Krivosheev A.S., “Interpolyatsiya s otsenkami v $\mathbb{C}^n$ i ee primenenie”, Matem. sb., 192:9 (2001), 39–84 | DOI | MR | Zbl
[17] Leontev A.F., Ryady eksponent, Nauka, M., 1976 | MR
[18] Krivosheeva O.A., “Osobye tochki summy ryada eksponentsialnykh monomov na granitse oblasti skhodimosti”, Algebra i analiz, 23:2 (2011), 162–205 | MR
[19] Leontev A.F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR
[20] Napalkov V.V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR
[21] Levin B.Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[22] Krivosheeva O.A., “Oblast skhodimosti ryadov eksponentsialnykh mnogochlenov”, Ufimsk. matem. zhurn., 5:4 (2013), 84–90 | MR
[23] Krivosheev A.S., “Invariantnye podprostranstva v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Ufimsk. matem. zhurn., 1:2 (2009), 53–74
[24] Krivosheev A.S., “Invariantnye podprostranstva v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Ufimsk. matem. zhurn., 1:3 (2009), 65–86 | Zbl
[25] Krivosheev A.S., “Kriterii analiticheskogo prodolzheniya funktsii iz glavnykh invariantnykh podprostranstv v vypuklykh oblastyakh iz $\mathbb{C}^n$”, Algebra i analiz, 22:4 (2010), 137–197 | MR