Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 44-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the groups of conformal transformations of $n$-dimensional pseudo-Riemannian orbifolds $({\mathcal N},g)$ as $n\geq 3$. We extend the Alekseevskii method for studying conformal transformation groups of Riemannian manifolds to pseudo-Riemannian orbifolds. We show that a conformal pseudo-Riemannian geometry is induced on each stratum of such orbifold. Due to this, for $k\in\{0,1\}\cup\{3,\ldots,n-1\}$, we obtain exact estimates for the dimensions of the conformal transformation groups of $n$-dimensional pseudo-Riemannian orbifolds admitting $k$-dimensional stratum with essential groups of conformal transforms. A key fact in obtaining these estimates is that each connected transformation group of an orbifold preserves every connected component of each its stratum. The influence of stratification of $n$-dimensional pseudo-Riemann orbifold to the similarity transformation group of this orbifold is also studied for $n\geq 2$. We prove that the obtained estimates for the dimension of the complete essential groups of conformal transformations and the similarity transformation groups of $n$-dimensional pseudo-Riemann orbifolds are sharp; this is done by adducing corresponding examples of locally flat pseudo-Riemannian orbifolds.
Keywords: orbifold, conformal pseudo-Riemannian geometry
Mots-clés : conformal transformation, Lie group.
@article{UFA_2018_10_2_a3,
     author = {N. I. Zhukova},
     title = {Influence of stratification on the groups of conformal transformations of {pseudo-Riemannian} orbifolds},
     journal = {Ufa mathematical journal},
     pages = {44--57},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a3/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds
JO  - Ufa mathematical journal
PY  - 2018
SP  - 44
EP  - 57
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a3/
LA  - en
ID  - UFA_2018_10_2_a3
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds
%J Ufa mathematical journal
%D 2018
%P 44-57
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a3/
%G en
%F UFA_2018_10_2_a3
N. I. Zhukova. Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a3/

[1] D.V. Alekseevskii, “Lorentzian manifolds with transitive conformal group”, Note di Matematica, 37:1 (2017) | MR

[2] Podoksenov M.H., “Lorentsevo mnogoobrazie s gruppoi konformnykh preobrazovanii, obladayuschei normalnoi odnoparametricheskoi podgruppoi gomotetii”, Sib. Matem. zhurnal, 38:6 (1997), 1356–1359 | MR | Zbl

[3] C. Frances, “Sur les variétés lorentziennes dont le group conforme est essentiel”, Math. Ann., 332:1 (2005), 103–119 | DOI | MR | Zbl

[4] C. Frances, “About pseudo-Riemannian Lichnerovitcz conjecture”, Transformation Groups, 29:4 (2015), 1015–1022 | DOI | MR

[5] C. Frances, A. Zeghib, “Some remarks on pseudo-Riemannian conformal actions of simple Lie groups”, Math. Res. Lett., 12:1 (2005), 49–56 | DOI | MR | Zbl

[6] C. Frances, K. Melnick, “Conformal actions of nilpotent groups on pseudo-Riemannian manifolds”, Duke Math J., 153:3 (2010), 511–550 | DOI | MR | Zbl

[7] V. Alekseevsky, H. Baom (eds.), Resent development in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich, 2008, 549 pp. | MR

[8] A. Adem, J. Leida, Y. Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, New York, 2007, 170 pp. | MR | Zbl

[9] N.I. Zhukova, “Local and global stability of compact leaves and foliations”, J. of Mathematical Physics, Analysis, Geometry, 9:3 (2013), 400–420 | MR | Zbl

[10] W.P. Thurston, The geometry and topology of $3$-manifolds, Princeton Univ. Press, Princeton, 1978, 360 pp.

[11] Bagaev A.V., Zhukova N.I., “Gruppy avtomorfizmov $G$-struktur konechnogo tipa na orbiobraziyakh”, Sib. Matem. zhurnal, 44:2 (2003), 263–278 | MR | Zbl

[12] Bagaev A.V., Zhukova N.I., “Gruppy izometrii rimanovykh orbifoldov”, Sib. matem. zhurnal, 48:4 (2007), 723–741 | MR | Zbl

[13] A.V. Bagaev, N.I. Zhukova, “The automorphism group of some geometric structures on orbifolds”, Lie groups: New Research, Chap 16, Nova Science Publishers, New York, 2009, 447–483

[14] Zhukova N.I., Rogozhina E.A., “Klassifikatsiya kompaktnykh lorentsevykh $2$-orbifoldov s nekompaktnoi polnoi gruppoi izometrii”, Sib. Matem. zhurnal, 53:6 (2012), 1292–1309 | MR | Zbl

[15] R.S. Palais, “A global formulation of the Lie theory of transformation groups”, Memoirs of AMS, 22, 1957, 1–129 | MR

[16] Alekseevskii D.V., “Gruppy konformnykh preobrazovanii rimanovykh prostranstv”, Mvtem. sb., 18:2 (1972), 280–296 | MR

[17] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York, 1995, 190 pp. | MR | Zbl