Mots-clés : conformal transformation, Lie group.
@article{UFA_2018_10_2_a3,
author = {N. I. Zhukova},
title = {Influence of stratification on the groups of conformal transformations of {pseudo-Riemannian} orbifolds},
journal = {Ufa mathematical journal},
pages = {44--57},
year = {2018},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a3/}
}
N. I. Zhukova. Influence of stratification on the groups of conformal transformations of pseudo-Riemannian orbifolds. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a3/
[1] D.V. Alekseevskii, “Lorentzian manifolds with transitive conformal group”, Note di Matematica, 37:1 (2017) | MR
[2] Podoksenov M.H., “Lorentsevo mnogoobrazie s gruppoi konformnykh preobrazovanii, obladayuschei normalnoi odnoparametricheskoi podgruppoi gomotetii”, Sib. Matem. zhurnal, 38:6 (1997), 1356–1359 | MR | Zbl
[3] C. Frances, “Sur les variétés lorentziennes dont le group conforme est essentiel”, Math. Ann., 332:1 (2005), 103–119 | DOI | MR | Zbl
[4] C. Frances, “About pseudo-Riemannian Lichnerovitcz conjecture”, Transformation Groups, 29:4 (2015), 1015–1022 | DOI | MR
[5] C. Frances, A. Zeghib, “Some remarks on pseudo-Riemannian conformal actions of simple Lie groups”, Math. Res. Lett., 12:1 (2005), 49–56 | DOI | MR | Zbl
[6] C. Frances, K. Melnick, “Conformal actions of nilpotent groups on pseudo-Riemannian manifolds”, Duke Math J., 153:3 (2010), 511–550 | DOI | MR | Zbl
[7] V. Alekseevsky, H. Baom (eds.), Resent development in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zurich, 2008, 549 pp. | MR
[8] A. Adem, J. Leida, Y. Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, New York, 2007, 170 pp. | MR | Zbl
[9] N.I. Zhukova, “Local and global stability of compact leaves and foliations”, J. of Mathematical Physics, Analysis, Geometry, 9:3 (2013), 400–420 | MR | Zbl
[10] W.P. Thurston, The geometry and topology of $3$-manifolds, Princeton Univ. Press, Princeton, 1978, 360 pp.
[11] Bagaev A.V., Zhukova N.I., “Gruppy avtomorfizmov $G$-struktur konechnogo tipa na orbiobraziyakh”, Sib. Matem. zhurnal, 44:2 (2003), 263–278 | MR | Zbl
[12] Bagaev A.V., Zhukova N.I., “Gruppy izometrii rimanovykh orbifoldov”, Sib. matem. zhurnal, 48:4 (2007), 723–741 | MR | Zbl
[13] A.V. Bagaev, N.I. Zhukova, “The automorphism group of some geometric structures on orbifolds”, Lie groups: New Research, Chap 16, Nova Science Publishers, New York, 2009, 447–483
[14] Zhukova N.I., Rogozhina E.A., “Klassifikatsiya kompaktnykh lorentsevykh $2$-orbifoldov s nekompaktnoi polnoi gruppoi izometrii”, Sib. Matem. zhurnal, 53:6 (2012), 1292–1309 | MR | Zbl
[15] R.S. Palais, “A global formulation of the Lie theory of transformation groups”, Memoirs of AMS, 22, 1957, 1–129 | MR
[16] Alekseevskii D.V., “Gruppy konformnykh preobrazovanii rimanovykh prostranstv”, Mvtem. sb., 18:2 (1972), 280–296 | MR
[17] S. Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York, 1995, 190 pp. | MR | Zbl