Perturbation of second order nonlinear equation by delta-like potential
Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider boundary value problems for one-dimensional second order quasilinear equation on bounded and unbounded intervals $I$ of the real axis. The equation perturbed by the delta-shaped potential $\varepsilon^{-1}Q\left(\varepsilon^{-1}x\right)$, where $Q(\xi)$ is a compactly supported function, $0\varepsilon\ll1$. The mean value of $\left$ can be negative, but it is assumed to be bounded from below $\left$. The number $m_0$ is defined in terms of coefficients of the equation. We study the convergence rate of the solution of the perturbed problem $ u^\varepsilon $ to the solution of the limit problem $ u_0 $ as the parameter $ \varepsilon $ tends to zero. In the case of a bounded interval $I$, the estimate of the form $|u^\varepsilon(x)-u_0(x)|$ is established. As the interval $I$ is unbounded, we prove a weaker estimate $|u^\varepsilon(x)-u_0(x) / $. The estimates are proved by using original cut-off functions as trial functions. For simplicity, the proof of the existence of solutions to perturbed and limiting problems are made by the method of contracting mappings. The disadvantage of this approach, as it is known, is the smallness of the nonlinearities in the equation. We consider the cases of the Dirichlet, Neumann and Robin condition.
Keywords: second order nonlinear equation, delta-like potential, small parameter.
@article{UFA_2018_10_2_a2,
     author = {T. R. Gadyl'shin and F. Kh. Mukminov},
     title = {Perturbation of second order nonlinear equation by delta-like potential},
     journal = {Ufa mathematical journal},
     pages = {31--43},
     year = {2018},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a2/}
}
TY  - JOUR
AU  - T. R. Gadyl'shin
AU  - F. Kh. Mukminov
TI  - Perturbation of second order nonlinear equation by delta-like potential
JO  - Ufa mathematical journal
PY  - 2018
SP  - 31
EP  - 43
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a2/
LA  - en
ID  - UFA_2018_10_2_a2
ER  - 
%0 Journal Article
%A T. R. Gadyl'shin
%A F. Kh. Mukminov
%T Perturbation of second order nonlinear equation by delta-like potential
%J Ufa mathematical journal
%D 2018
%P 31-43
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a2/
%G en
%F UFA_2018_10_2_a2
T. R. Gadyl'shin; F. Kh. Mukminov. Perturbation of second order nonlinear equation by delta-like potential. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 31-43. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a2/

[1] F.Kh. Mukminov, T.R. Gadylshin, “Boundary-value problem for a second-order nonlinear equation with delta-like potential”, Proc. Steklov Inst. Math., 292:1 (2016), 216–230 | DOI | MR

[2] S. Albeverio, F. Gesztesy, R. Horgh-Krohn, H. Holder, P. Exner, Solvable Models in Quantum Mechanics, AMS Chelsea Publ., 2004, 488 pp. | MR

[3] Gadylshin R.R., Khusnullin I.Kh., “Vozmuschenie operatora Shredingera uzkim potentsialom”, Ufimskii matematicheskii zhurnal, 3:3 (2011), 55–66 | Zbl

[4] Gadylshin T.R., “Kraevye zadachi dlya uravneniya Shrëdingera s bystroostsilliruyuschim i delta-obraznym potentsialami”, Matem. zametki, 98:6 (2015), 842–852 | DOI | Zbl

[5] Savchuk A.M., Shkalikov A.A., “Operatory Shturma-Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[6] Mirzoev K.A., Shkalikov A.A., “Differentsialnye operatory chetnogo poryadka s koeffitsientami-raspredeleniyami”, Matem. zametki, 99:56 (2016), 788–793 | DOI | Zbl

[7] Kostenko A.S., Malamud M.M., “Ob odnomernom operatore Shrëdingera s $\delta$-vzaimodeistviyami”, Funkts. analiz i ego pril., 44:2 (2010), 87–91 | DOI | MR | Zbl

[8] S.N. Friedman, “Perturbation of the Shrodinquer equation by potentials with small support”, J. Functional Analysis, 10:3 (1972), 346–360 | DOI | MR | Zbl

[9] Chueshov I.D., “O vozmuschenii operatora Shredingera potentsialami s malymi nositelyami”, Matem. zametki, 20:5 (1976), 675–680 | MR | Zbl

[10] Berezin F.A., Faddeev L.D., “Zamechanie o uravnenii Shredingera s singulyarnym potentsialom”, DAN SSSR, 137:5 (1961), 1011–1014 | Zbl

[11] Fragela A.K., “O vozmuschenii poligarmonicheskogo operatora s deltaobraznymi potentsialami”, Matem. sb., 130:3 (1986), 386–393 | MR

[12] Neiman-zade M.I., Shkalikov A.A., “Operatory Shredingera s singulyarnymi potentsialami iz prostranstv multiplikatorov”, Matem. zametki, 66:5 (1999), 723–733 | DOI | MR | Zbl

[13] M.I. Neiman-zade, A.A. Shkalikov, “Strongly Elliptic Operators with Singular Coefficients”, Russian Journal of Mathematical Physics, 13:1 (2006), 70–78 | DOI | MR | Zbl

[14] V.G. Maz'ya, I.E. Verbitsky, Form Boundedness of the General Second Order Differential Operator, 2004, arXiv: 0411216v1 | MR

[15] Vishik M.I., “Kvazilineinye silno ellipticheskie sistemy differentsialnykh uravnenii, imeyuschie divergentnuyu formu”, Tr. MMO, 12, 1963, 125–184 | Zbl

[16] Kozhevnikova L.M., “Ob entropiinom reshenii ellipticheskoi zadachi v anizotropnykh prostranstvakh Soboleva-Orlicha”, Zh. vychisl. matem. i matem. fiz., 57:3 (2017), 429–447 | DOI | Zbl

[17] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1971, 512 pp. | MR