@article{UFA_2018_10_2_a1,
author = {D. I. Borisov},
title = {On spectral gaps of a {Laplacian} in a strip with a bounded periodic perturbation},
journal = {Ufa mathematical journal},
pages = {14--30},
year = {2018},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a1/}
}
D. I. Borisov. On spectral gaps of a Laplacian in a strip with a bounded periodic perturbation. Ufa mathematical journal, Tome 10 (2018) no. 2, pp. 14-30. http://geodesic.mathdoc.fr/item/UFA_2018_10_2_a1/
[1] Skriganov M.M., Sobolev A.V., “Asimptoticheskie otsenki dlya spektralnykh zon periodicheskikh operatorov Shredingera”, Alg. an., 17:1 (2005), 276–288
[2] L. Parnovski, “Bethe-Sommerfeld conjecture”, Ann. H. Poincaré., 9:3 (2008), 457–508 | DOI | MR | Zbl
[3] B.E.J. Dahlberg, E. Trubowitz, “A remark on two dimensional periodic potentials”, Comment. Math. Helvetici., 57:1 (1982), 130–134 | DOI | MR | Zbl
[4] B. Helffer, A. Mohamed, “Asymptotics of the density of states for the Schrödinger operator with periodic electric potential”, Duke Math. J., 92:1 (1998), 1–60 | DOI | MR | Zbl
[5] M.M. Skriganov, A.V. Sobolev, “Variation of the number of lattice points in large balls”, Acta Arithm., 120:3 (2005), 245–267 | DOI | MR | Zbl
[6] Skriganov M.M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122
[7] Y. Karpeshina, “Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case”, Comm. Math. Phys., 251:3 (2004), 473–514 | DOI | MR | Zbl
[8] A. Mohamed, “Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential”, J. Math. Phys., 38:8 (1997), 4023–4051 | DOI | MR | Zbl
[9] L. Parnovski, A. Sobolev, “On the Bethe-Sommerfeld conjecture for the polyharmonic operator”, Duke Math. J., 107:2 (2001), 209–238 | DOI | MR | Zbl
[10] G. Barbatis, L. Parnovski, “Bethe-Sommerfeld conjecture for pseudo-differential perturbation”, Comm. Part. Diff. Equat., 34:4 (2009), 383–418 | DOI | MR | Zbl
[11] L. Parnovski, A.V. Sobolev, “Bethe-Sommerfeld conjecture for periodic operators with strong perturbations”, Invent. Math., 181:3 (2010), 467–540 | DOI | MR | Zbl
[12] Suslina T.A., “Ob usrednenii periodicheskogo ellipticheskogo operatora v polose”, Alg. an., 16:1 (2004), 269–292 | Zbl
[13] Senik N.N., “Usrednenie periodicheskogo ellipticheskogo operatora v polose pri razlichnykh granichnykh usloviyakh”, Alg. an., 25:4 (2013), 182–259 | MR
[14] D. Borisov, G. Cardone, T. Durante, “Homogenization and uniform resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. Royal Soc. Edin. Sec. A Math., 146:6 (2016), 1115–1158 | DOI | MR | Zbl
[15] D. Borisov, G. Cardone, L. Faella, C. Perugia, “Uniform resolvent convergence for a strip with fast oscillating boundary”, J. Diff. Equat., 255:12 (2013), 4378–4402 | DOI | MR | Zbl
[16] D. Borisov, R. Bunoiu, G. Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Zeit. Angew. Math. Phys., 64:3 (2013), 439–472 | DOI | MR | Zbl
[17] D. Borisov, R. Bunoiu, G. Cardone, “On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition”, Ann. H. Poincaré., 11:8 (2010), 1591–1627 | DOI | MR | Zbl
[18] D. Borisov, G. Cardone, “Homogenization of the planar waveguide with frequently alternating boundary conditions”, J. Phys. A. Math. Gen., 42:36 (2009), 365205 | DOI | MR | Zbl
[19] C.B.E. Beeken, Periodic Schrödinger operators in dimension two: constant magnetic fields and boundary value problems, PhD thesis, University of Sussex, 2002
[20] E. Krätzel, Lattice Points, Kluwer Academic Publishers, Dordrecht, 1988 | MR | Zbl