On the growth of solutions of some higher order linear differential equations with meromorphic coefficients
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 115-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, by using the value distribution theory, we study the growth and the oscillation of meromorphic solutions of the linear differential equation \begin{align*} f^{(k) }+\left( A_{k-1,1}(z) e^{P_{k-1}(z) }+A_{k-1,2}(z) e^{Q_{k-1}(z) }\right) f^{\left( k-1\right) } \\ +\cdots +\left( A_{0,1}(z) e^{P_{0}(z) }+A_{0,2}(z) e^{Q_{0}(z) }\right) f=F(z), \end{align*} where $A_{j,i}(z) \left( \not\equiv 0\right) $ $\left( j=0,\ldots,k-1\right),$ $F(z) $ are meromorphic functions of a finite order, and $P_{j}(z),Q_{j}(z) $ $ (j=0,1,\ldots,k-1;i=1,2)$ are polynomials with degree $n\geqslant 1$. Under some conditions, we prove that as $F\equiv 0$, each meromorphic solution $f\not\equiv 0$ with poles of uniformly bounded multiplicity is of infinite order and satisfies $\rho _{2}(f)=n$ and as $F\not\equiv 0$, there exists at most one exceptional solution $f_{0}$ of a finite order, and all other transcendental meromorphic solutions $f$ with poles of uniformly bounded multiplicities satisfy ${\overline{\lambda }(f)=\lambda (f)=\rho \left( f\right) =+\infty }$ and $\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right) =\rho _{2}\left( f\right) \leq \max \left\{ n,\rho \left( F\right) \right\}.$ Our results extend the previous results due Zhan and Xiao [19].
Keywords: Order of growth, hyper-order, exponent of convergence of zero sequence, differential equation, meromorphic function.
@article{UFA_2018_10_1_a8,
     author = {M. Saidani and B. Bela{\"\i}di},
     title = {On the growth of solutions of some higher order linear differential equations with meromorphic coefficients},
     journal = {Ufa mathematical journal},
     pages = {115--134},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/}
}
TY  - JOUR
AU  - M. Saidani
AU  - B. Belaïdi
TI  - On the growth of solutions of some higher order linear differential equations with meromorphic coefficients
JO  - Ufa mathematical journal
PY  - 2018
SP  - 115
EP  - 134
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/
LA  - en
ID  - UFA_2018_10_1_a8
ER  - 
%0 Journal Article
%A M. Saidani
%A B. Belaïdi
%T On the growth of solutions of some higher order linear differential equations with meromorphic coefficients
%J Ufa mathematical journal
%D 2018
%P 115-134
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/
%G en
%F UFA_2018_10_1_a8
M. Saidani; B. Belaïdi. On the growth of solutions of some higher order linear differential equations with meromorphic coefficients. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 115-134. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/

[1] M. Andasmas, B. Belaïdi, “On the order and hyper-order of meromorphic solutions of higher order linear differential equations”, Hokkaido Math. J., 42:3 (2013), 357–383 | DOI | MR

[2] B. Belaïdi, H. Habib, “Relations between meromorphic solutions and their derivatives of differential equations and small functions”, Ann. Univ. Buchar. Math. Ser. (LXIV), 6:1 (2015), 35–57 | MR

[3] Z. X. Chen, “On the hyper-order of solutions of some second order linear differential equations”, Acta Math. Sin. (Engl. Ser.), 18:1 (2002), 79–88 | DOI | MR

[4] Z. X. Chen, “On the rate of growth of meromorphic solutions of higher order linear differential equations”, Acta Math. Sinica (Chin. Ser.), 42:3 (1999), 551–558 | MR

[5] Z. X. Chen, “The zero, pole and order of meromorphic solutions of differential equations with meromorphic coefficients”, Kodai Math. J., 19:3 (1996), 341–354 | DOI | MR

[6] Z. X. Chen, “Zeros of meromorphic solutions of higher order linear differential equations”, Analysis, 14:4 (1994), 425–438 | MR

[7] J. Chen, J. F. Xu, “Growth of meromorphic solutions of higher order linear differential equations”, Electron. J. Qual. Theory Differ. Equ., 2009:1 (2009), 1–13 | MR

[8] G. G. Gundersen, “Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates”, J. London Math. Soc., 37:1 (1988), 88–104 | DOI | MR

[9] G. G. Gundersen, “Finite order solutions of second order linear differential equations”, Trans. Amer. Math. Soc., 305:1 (1988), 415–429 | DOI | MR

[10] H. Habib, B. Belaïdi, “On the growth of solutions of some higher order linear differential equations with entire coefficients”, Electron. J. Qual. Theory Differ. Equ., 2011:93 (2011), 1–13 | DOI | MR

[11] K. Hamani, B. Belaïdi, “On the hyper-order of solutions of a class of higher order linear differential equations”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 27–39 | MR

[12] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964 | MR

[13] J. Jank, L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel, 1985 | MR

[14] K. H. Kwon, “On the growth of entire functions satisfying second order linear differential equations”, Bull. Korean Math. Soc, 33:3 (1996), 487–496 | MR

[15] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993 | MR

[16] J. Tu, H. Y. Xu, H. M. Liu, Y. Liu, “Complex oscillation of higher order Linear differential equations with coefficients being lacunary series of finite iterated order”, Abstr. Appl. Anal., 2013 (2013), 634739 | MR

[17] J. Wang, H. X. Yi, “Fixed points and hyper-order of differential polynomials generated by solutions of differential equations”, Complex Var. Theory Appl., 48:1 (2003), 83–94 | MR

[18] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publ. Group, Dordrecht, 2003 | MR

[19] Y. Zhan, L. Xiao, “The growth of solutions of higher order differential equations with coefficients having the same order”, J. Math. Res. Appl., 35:4 (2015), 387–399 | MR