@article{UFA_2018_10_1_a8,
author = {M. Saidani and B. Bela{\"\i}di},
title = {On the growth of solutions of some higher order linear differential equations with meromorphic coefficients},
journal = {Ufa mathematical journal},
pages = {115--134},
year = {2018},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/}
}
TY - JOUR AU - M. Saidani AU - B. Belaïdi TI - On the growth of solutions of some higher order linear differential equations with meromorphic coefficients JO - Ufa mathematical journal PY - 2018 SP - 115 EP - 134 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/ LA - en ID - UFA_2018_10_1_a8 ER -
M. Saidani; B. Belaïdi. On the growth of solutions of some higher order linear differential equations with meromorphic coefficients. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 115-134. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/
[1] M. Andasmas, B. Belaïdi, “On the order and hyper-order of meromorphic solutions of higher order linear differential equations”, Hokkaido Math. J., 42:3 (2013), 357–383 | DOI | MR
[2] B. Belaïdi, H. Habib, “Relations between meromorphic solutions and their derivatives of differential equations and small functions”, Ann. Univ. Buchar. Math. Ser. (LXIV), 6:1 (2015), 35–57 | MR
[3] Z. X. Chen, “On the hyper-order of solutions of some second order linear differential equations”, Acta Math. Sin. (Engl. Ser.), 18:1 (2002), 79–88 | DOI | MR
[4] Z. X. Chen, “On the rate of growth of meromorphic solutions of higher order linear differential equations”, Acta Math. Sinica (Chin. Ser.), 42:3 (1999), 551–558 | MR
[5] Z. X. Chen, “The zero, pole and order of meromorphic solutions of differential equations with meromorphic coefficients”, Kodai Math. J., 19:3 (1996), 341–354 | DOI | MR
[6] Z. X. Chen, “Zeros of meromorphic solutions of higher order linear differential equations”, Analysis, 14:4 (1994), 425–438 | MR
[7] J. Chen, J. F. Xu, “Growth of meromorphic solutions of higher order linear differential equations”, Electron. J. Qual. Theory Differ. Equ., 2009:1 (2009), 1–13 | MR
[8] G. G. Gundersen, “Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates”, J. London Math. Soc., 37:1 (1988), 88–104 | DOI | MR
[9] G. G. Gundersen, “Finite order solutions of second order linear differential equations”, Trans. Amer. Math. Soc., 305:1 (1988), 415–429 | DOI | MR
[10] H. Habib, B. Belaïdi, “On the growth of solutions of some higher order linear differential equations with entire coefficients”, Electron. J. Qual. Theory Differ. Equ., 2011:93 (2011), 1–13 | DOI | MR
[11] K. Hamani, B. Belaïdi, “On the hyper-order of solutions of a class of higher order linear differential equations”, Bull. Belg. Math. Soc. Simon Stevin, 20:1 (2013), 27–39 | MR
[12] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford, 1964 | MR
[13] J. Jank, L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Verlag, Basel, 1985 | MR
[14] K. H. Kwon, “On the growth of entire functions satisfying second order linear differential equations”, Bull. Korean Math. Soc, 33:3 (1996), 487–496 | MR
[15] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15, Walter de Gruyter Co., Berlin, 1993 | MR
[16] J. Tu, H. Y. Xu, H. M. Liu, Y. Liu, “Complex oscillation of higher order Linear differential equations with coefficients being lacunary series of finite iterated order”, Abstr. Appl. Anal., 2013 (2013), 634739 | MR
[17] J. Wang, H. X. Yi, “Fixed points and hyper-order of differential polynomials generated by solutions of differential equations”, Complex Var. Theory Appl., 48:1 (2003), 83–94 | MR
[18] C. C. Yang, H. X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publ. Group, Dordrecht, 2003 | MR
[19] Y. Zhan, L. Xiao, “The growth of solutions of higher order differential equations with coefficients having the same order”, J. Math. Res. Appl., 35:4 (2015), 387–399 | MR