On the growth of solutions of some higher order linear differential equations with meromorphic coefficients
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 115-134
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, by using the value distribution theory, we study the growth and the oscillation of
meromorphic solutions of the linear differential equation
\begin{align*}
f^{(k) }+\left( A_{k-1,1}(z) e^{P_{k-1}(z) }+A_{k-1,2}(z) e^{Q_{k-1}(z) }\right)
f^{\left( k-1\right) }
\\
+\cdots +\left( A_{0,1}(z) e^{P_{0}(z)
}+A_{0,2}(z) e^{Q_{0}(z) }\right) f=F(z),
\end{align*}
where $A_{j,i}(z) \left( \not\equiv 0\right) $ $\left(
j=0,\ldots,k-1\right),$ $F(z) $ are meromorphic functions of a
finite order, and $P_{j}(z),Q_{j}(z) $ $
(j=0,1,\ldots,k-1;i=1,2)$ are polynomials with degree $n\geqslant 1$. Under some
conditions, we prove that as $F\equiv 0$, each meromorphic solution $f\not\equiv 0$ with poles of uniformly bounded multiplicity is of infinite order and satisfies $\rho _{2}(f)=n$ and as $F\not\equiv 0$, there exists at most one exceptional solution $f_{0}$ of a finite order, and all other transcendental meromorphic solutions $f$ with poles of uniformly bounded multiplicities satisfy ${\overline{\lambda }(f)=\lambda (f)=\rho \left( f\right) =+\infty }$ and $\overline{\lambda }_{2}\left( f\right) =\lambda _{2}\left( f\right)
=\rho _{2}\left( f\right) \leq \max \left\{ n,\rho \left( F\right) \right\}.$ Our results extend the previous results due Zhan and Xiao [19].
Keywords:
Order of growth, hyper-order, exponent of convergence of zero sequence, differential equation, meromorphic function.
@article{UFA_2018_10_1_a8,
author = {M. Saidani and B. Bela{\"\i}di},
title = {On the growth of solutions of some higher order linear differential equations with meromorphic coefficients},
journal = {Ufa mathematical journal},
pages = {115--134},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/}
}
TY - JOUR AU - M. Saidani AU - B. Belaïdi TI - On the growth of solutions of some higher order linear differential equations with meromorphic coefficients JO - Ufa mathematical journal PY - 2018 SP - 115 EP - 134 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/ LA - en ID - UFA_2018_10_1_a8 ER -
%0 Journal Article %A M. Saidani %A B. Belaïdi %T On the growth of solutions of some higher order linear differential equations with meromorphic coefficients %J Ufa mathematical journal %D 2018 %P 115-134 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/ %G en %F UFA_2018_10_1_a8
M. Saidani; B. Belaïdi. On the growth of solutions of some higher order linear differential equations with meromorphic coefficients. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 115-134. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a8/