Mots-clés : convex domain, Fourier–Laplace transform.
@article{UFA_2018_10_1_a5,
author = {A. A. Makhota},
title = {On completeness of exponential systems in convex domain},
journal = {Ufa mathematical journal},
pages = {76--79},
year = {2018},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a5/}
}
A. A. Makhota. On completeness of exponential systems in convex domain. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 76-79. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a5/
[1] Levin B. Ya., Rasperedelenie kornei tselykh funktsii, Gos. izd.-vo tekh.-teor. lit., M., 1956, 632 pp.
[2] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Analysis Mathematica, 11 (1985), 257–282 | DOI | MR
[3] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 175 pp. | MR
[4] Napalkov V. V., Rumyantseva A. A., Yulmukhametov R. S., “Polnota sistem eksponent v vesovykh prostranstvakh na veschestvennoi osi”, DAN, 429:2 (2009), 155–158
[5] Napalkov V. V., Rumyantseva A. A., Yulmukhametov R. S., “Polnota sistem eksponent v vesovykh prostranstvakh na veschestvennoi osi”, Ufimskii mat. zhurnal, 2:1 (2010), 97–109
[6] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Peli-Vinera na vesovye prostranstva”, Matemat. zametki, 48:5 (1990), 80–85 | MR
[7] Rumyantseva A. A., “Asimptotika $\delta $-subgarmonicheskikh funktsii i ikh assotsiirovannykh mer”, Ufimskii mat. zhurnal, 2:3 (2010), 83–107
[8] Sedletskii A. M., Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005, 504 pp.
[9] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2006, 171 pp.