On completeness of exponential systems in convex domain
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 76-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to studying the completeness of the systems of exponentials in the space of functions analytic in a convex domain. The problem on the completeness of the systems of the exponentials in various functional spaces is classical and was studied by many mathematicians, for instance, by B.Ya. Levin, A.F. Leontiev, A.M. Sedletskii, B.N. Khabibullin, R.S. Yulmukhametov, and others. We prove that the completeness of the system of exponentials in the space of functions analytic in a convex domain is equivalent to the completeness of the system of exponentials in the space of functions analytic in a circle with the radius depending on the properties of a given convex domain. We also consider an example by choosing an ellipse as the convex domain. Here we find the values of the support function and the radius of the corresponding circle.
Keywords: completeness of a system, entire function
Mots-clés : convex domain, Fourier–Laplace transform.
@article{UFA_2018_10_1_a5,
     author = {A. A. Makhota},
     title = {On completeness of exponential systems in convex domain},
     journal = {Ufa mathematical journal},
     pages = {76--79},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a5/}
}
TY  - JOUR
AU  - A. A. Makhota
TI  - On completeness of exponential systems in convex domain
JO  - Ufa mathematical journal
PY  - 2018
SP  - 76
EP  - 79
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a5/
LA  - en
ID  - UFA_2018_10_1_a5
ER  - 
%0 Journal Article
%A A. A. Makhota
%T On completeness of exponential systems in convex domain
%J Ufa mathematical journal
%D 2018
%P 76-79
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a5/
%G en
%F UFA_2018_10_1_a5
A. A. Makhota. On completeness of exponential systems in convex domain. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 76-79. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a5/

[1] Levin B. Ya., Rasperedelenie kornei tselykh funktsii, Gos. izd.-vo tekh.-teor. lit., M., 1956, 632 pp.

[2] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Analysis Mathematica, 11 (1985), 257–282 | DOI | MR

[3] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983, 175 pp. | MR

[4] Napalkov V. V., Rumyantseva A. A., Yulmukhametov R. S., “Polnota sistem eksponent v vesovykh prostranstvakh na veschestvennoi osi”, DAN, 429:2 (2009), 155–158

[5] Napalkov V. V., Rumyantseva A. A., Yulmukhametov R. S., “Polnota sistem eksponent v vesovykh prostranstvakh na veschestvennoi osi”, Ufimskii mat. zhurnal, 2:1 (2010), 97–109

[6] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Peli-Vinera na vesovye prostranstva”, Matemat. zametki, 48:5 (1990), 80–85 | MR

[7] Rumyantseva A. A., “Asimptotika $\delta $-subgarmonicheskikh funktsii i ikh assotsiirovannykh mer”, Ufimskii mat. zhurnal, 2:3 (2010), 83–107

[8] Sedletskii A. M., Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005, 504 pp.

[9] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2006, 171 pp.