On measures generating orthogonal polynomials with similar asymptotic behavior of the ratio at infinity
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 64-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the influence of the measure perturbations on the asymptotic behavior of the ratio of orthogonal polynomials. We suppose that the absolutely continuous part of the measure is supported on finitely many Jordan curves. The weight function satisfies the modified Szegö condition. The singular part of the measure consists of finitely many point masses outside the polynomial convex hull of the support of the absolutely continuous part of the measure. We study the stability of asymptotics of the ratio in the following sense: $$ \frac{P_{\nu,n}(z)}{P_{\nu,n+1}(z)}-\frac{P_{\mu,n}(z)}{P_{\mu,n+1}(z)}\to 0,\quad n\to\infty. $$ The problem is a generalization of the problem on compactness of the perturbation of Jacobi operator generated by the perturbation of its spectral measure. We find a condition necessary (or necessary and sufficient under some additional restriction) for the stability of the asymptotical behavior of the corresponding orthogonal polynomials. One of the main tools in the study are the Riemann theta functions.
Keywords: multivalued functions.
Mots-clés : orthogonal polynomials
@article{UFA_2018_10_1_a4,
     author = {A. A. Kononova},
     title = {On measures generating orthogonal polynomials with similar asymptotic behavior of the ratio at infinity},
     journal = {Ufa mathematical journal},
     pages = {64--75},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a4/}
}
TY  - JOUR
AU  - A. A. Kononova
TI  - On measures generating orthogonal polynomials with similar asymptotic behavior of the ratio at infinity
JO  - Ufa mathematical journal
PY  - 2018
SP  - 64
EP  - 75
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a4/
LA  - en
ID  - UFA_2018_10_1_a4
ER  - 
%0 Journal Article
%A A. A. Kononova
%T On measures generating orthogonal polynomials with similar asymptotic behavior of the ratio at infinity
%J Ufa mathematical journal
%D 2018
%P 64-75
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a4/
%G en
%F UFA_2018_10_1_a4
A. A. Kononova. On measures generating orthogonal polynomials with similar asymptotic behavior of the ratio at infinity. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 64-75. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a4/

[1] A. Ambroladze, “On exceptional sets of asymptotic relations for general orthogonal polynomials”, J. Approx. Theory, 82 (1995), 257–273 | DOI | MR

[2] B. Beckermann, “Complex Jacobi matrices”, J. Comput. Appl. Math., 127 (2001), 17–65 | DOI | MR

[3] A. A. Kononova, “Stability of ratio asymptotics of orthogonal polynomials under some class of measure perturbations”, Acta Sci. Math. (Szeged), 81:1–2 (2015), 133–143 | DOI | MR

[4] F. Peherstorfer, P. Yuditskii, “Asymptotic behavior of polynomials orthonormal on a homogeneous set”, J. d'Analyse Mathematique, 89:1 (2003), 113–154 | DOI | MR

[5] B. Simanek, “Relative asymptotics for general orthogonal polynomials”, Michigan Math. J., 66:1 (2017), 175–193 | DOI | MR

[6] M. Sodin, P. Yuditskii, “Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions”, J. Geom. Anal., 7 (1997), 387–435 | DOI | MR

[7] H. Widom, “Extremal polynomials associated with a system of curves in the complex plane”, Advances in Math., 3 (1969), 127–232 | DOI | MR

[8] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125(167):2(10) (1984), 231–258 | MR

[9] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2(218) (1981), 11–80 | MR

[10] Kalyagin V. A., Kononova A. A., “Ob asimptotike mnogochlenov, ortogonalnykh na sisteme dug, po mere, imeyuschei diskretnuyu chast”, Algebra i analiz, 21:2 (2009), 71–91

[11] Kononova A. A., “O kompaktnykh vozmuscheniyakh konechnozonnykh operatorov Yakobi”, Zap. nauchn. sem. POMI, 366, 2009, 84–101