Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems
Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 25-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider basic scenarios of local bifurcations in dynamical systems. We study the systems described by autonomous differential equations, discrete equations, as well as by non-autonomous periodic equations. We provide new formulae for calculating Lyapunov values. The formulae are obtained on the basis of a general operator approach for studying local bifurcations and they do not assume passing to normal forms and using the theorems on a central manifold. This method allows us to obtain new bifurcation formulae for studying main scenarios of local bifurcations. In the work we show how these bifurcation formulae lead one to new formulae for calculating Lyapunov values in problems on equilibria bifurcation, in Andronov–Hopf problems, in problems of doubling period, in problems on forced oscillations, etc. In the paper, the main attention is paid to obtain the first and the second Lyapunov value. The proposed approach allows us obtain Lyapunov values of higher order. As an application of the obtained formulae, in the paper we analyze basic scenarios of local bifurcations. We consider the problems on the direction of bifurcations, on stability of emerging solutions, on leading asymptotics for the solutions, etc. As an example, we calculate the Lyapunov values for Andronov–Hopf bifurcation in Langford system and for the problems on doubling period in Henon model.
Keywords: dynamical systems, Lyapunov values, equilibrium, stability.
Mots-clés : bifurcation
@article{UFA_2018_10_1_a2,
     author = {N. I. Gusarova and S. A. Murtazina and M. F. Fazlytdinov and M. G. Yumagulov},
     title = {Operator methods for calculating {Lyapunov} values in problems on local bifurcations of dynamical systems},
     journal = {Ufa mathematical journal},
     pages = {25--48},
     year = {2018},
     volume = {10},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a2/}
}
TY  - JOUR
AU  - N. I. Gusarova
AU  - S. A. Murtazina
AU  - M. F. Fazlytdinov
AU  - M. G. Yumagulov
TI  - Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems
JO  - Ufa mathematical journal
PY  - 2018
SP  - 25
EP  - 48
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a2/
LA  - en
ID  - UFA_2018_10_1_a2
ER  - 
%0 Journal Article
%A N. I. Gusarova
%A S. A. Murtazina
%A M. F. Fazlytdinov
%A M. G. Yumagulov
%T Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems
%J Ufa mathematical journal
%D 2018
%P 25-48
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a2/
%G en
%F UFA_2018_10_1_a2
N. I. Gusarova; S. A. Murtazina; M. F. Fazlytdinov; M. G. Yumagulov. Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems. Ufa mathematical journal, Tome 10 (2018) no. 1, pp. 25-48. http://geodesic.mathdoc.fr/item/UFA_2018_10_1_a2/

[1] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, v. 2, Institut kompyuternykh issledovanii, M.–Izhevsk, 2009, 548 pp.

[2] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 560 pp.

[3] Pliss V. A., Integralnye mnozhestva periodicheskikh sistem differentsialnykh uravnenii, Nauka, M., 1977, 304 pp. | MR

[4] A. Kelley, “The stable, center-stable, center-unstable, unstable manifolds”, J. Diff. Eq., no. 3, 1967 | MR

[5] Bryuno A. D., “Analiticheskaya forma differentsialnykh uravnenii”, Trudy MMO, 25, 1971, 119–262 ; Труды ММО, 26, 1972, 199–239

[6] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005, 416 pp.

[7] Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, N.Y., 1998, 593 pp. | MR

[8] Leonov G. A., Kuznetsov N. V., Kudryashova E. V., “Pryamoi metod vychisleniya lyapunovskikh velichin dvumernykh dinamicheskikh sistem”, Tr. IMM UrO RAN, 16, no. 1, 2010, 119–126

[9] S. Lynch, “Symbolic computation of Lyapunov quantities and the second part of Hilbert's sixteenth problem”, Differential equations with symbolic computations, Birkhäuser, Basel, 2005, 1–26 | MR

[10] Vyshinskii A. A., Ibragimova L. S., Murtazina S. A., Yumagulov M. G., “Operatornyi metod priblizhennogo issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh dinamicheskikh sistemakh”, Ufimskii matematicheskii zhurnal, 2:4 (2010), 3–26

[11] Ibragimova L. S., Mustafina I. Zh., Yumagulov M. G., “Asimptoticheskie formuly v zadache postroeniya oblastei giperbolichnosti i ustoichivosti dinamicheskikh sistem”, Ufimskii matematicheskii zhurnal, 8:3 (2016), 59–81 | MR

[12] Yumagulov M. G., “Lokalizatsiya yazykov Arnolda diskretnykh dinamicheskikh sistem”, Ufimskii matematicheskii zhurnal, 5:2 (2013), 109–131 | MR

[13] Yumagulov M. G., “Operatornyi metod issledovaniya pravilnoi bifurkatsii v mnogoparametricheskikh sistemakh”, Doklady AN, 424:2 (2009), 177–180 | MR

[14] Krasnoselskii M. A., Yumagulov M. G., “Metod funktsionalizatsii parametra v probleme sobstvennykh znachenii”, DAN Rossii, 365:2 (1999), 162–164 | MR

[15] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | MR

[16] Bautin N. N., Povedenie dinamicheskikh sistem vblizi granits oblasti ustoichivosti, Covremennye problemy mekhaniki, OGIZ. Gostekhizdat, L.–M., 1949 | MR

[17] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 332 pp. | MR