“Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 97-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two compatible linear evolution equations with times $s_1$ and $s_2$ depending on two spatial variables. These evolution equations are the analogues of the non-stationary Schrödinger equations determined by the two Hamiltonians $H^{\frac{7}{2}+1}_{s_k}(s_1,s_2, q_1,q_2, p_1, p_2)$ $(k=1,2)$ of the Hamilton system $H^{\frac{7}{2}+1}$ formed by a pair of compatible Hamiltonian systems of equations admitting the application of isomonodromic deformations method. These analogues arise from canonical non-stationary Schrödinger equations determined by the Hamiltonians $H^{\frac{7}{2}+1}_{s_k}$. They arise by the formal replacement of the Planck constant by the imaginary unit. We construct explicit solutions of these analogues of Schrödinger equations in terms of the solutions of the corresponding linear systems of ordinary differential equations in the isomonodromic deformations method, whose compatibility condition is the Hamiltonian system $H^{\frac{7}{2}+1}$. The key role in the construction of these explicit solutions is played by the change, which was used earlier in constructing the solutions of non-stationary Schrödinger equation determined by the Hamiltonians of isomonodromic Hamiltonian Garnier system with two degrees of freedom as well as of two isomonodromic degenerations of the latter. We discuss the applicability of this change for constructing the solutions to analogues of non-stationary Schrödinger equations determined by the Hamiltonians of the entire hierarchy of isomonodromic Hamiltonian systems with two degrees of freedom being the degenerations of this Garnier system. We mention also a relation of solutions to Hamilton systems $H^{\frac{7}{2}+1}$ with some problems of modern nonlinear mathematical physics. In particular, we show that the solutions of these Hamiltonian systems are determined explicitly by the simultaneous solutions to the Korteweg-de Vries equation $u_t+u_{xxx}+uu_x=0$ and a non-autonomous fifth order ordinary differential equations, which are used in universal description of the influence of a small dispersion on the transformation of weak hydrodynamical discontinuities into the strong ones.
Keywords: Hamilton systems, Shrödinger equation
Mots-clés : quantization, Painlevé equations, isomonodromic deformations method.
@article{UFA_2017_9_4_a9,
     author = {V. A. Pavlenko and B. I. Suleimanov},
     title = {{\textquotedblleft}Quantizations{\textquotedblright} of isomonodromic {Hamilton} system $H^{\frac{7}{2}+1}$},
     journal = {Ufa mathematical journal},
     pages = {97--107},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a9/}
}
TY  - JOUR
AU  - V. A. Pavlenko
AU  - B. I. Suleimanov
TI  - “Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$
JO  - Ufa mathematical journal
PY  - 2017
SP  - 97
EP  - 107
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a9/
LA  - en
ID  - UFA_2017_9_4_a9
ER  - 
%0 Journal Article
%A V. A. Pavlenko
%A B. I. Suleimanov
%T “Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$
%J Ufa mathematical journal
%D 2017
%P 97-107
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a9/
%G en
%F UFA_2017_9_4_a9
V. A. Pavlenko; B. I. Suleimanov. “Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 97-107. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a9/

[1] A. Bloemendal, B. Virag, “Limits of spiked random matrices I”, Probability Theory and Related Fields, 156:3–4 (2013), 795–825 | DOI | MR | Zbl

[2] A. Bloemendal, B. Virag, Limits of spiked random matrices II, 2011, arXiv: 1109.3704 | MR

[3] R. Conte, I. Dornic, “The master Painlevé VI heat equation”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR | Zbl

[4] P.A. Clarkson, N. Joshi, A. Pickering, “Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach”, Inverse problems, 15:1 (1999), 175–187 | DOI | MR | Zbl

[5] M.V. Demina, N.A. Kudryashov, “Polygons of differential equations for finding exact solutions”, Chaos, Solitons and Fractals, 33:5 (2007), 1480–1496 | DOI | MR | Zbl

[6] R. Garnier, “Sur des equations differentielles du troisieme ordre dont l'integrale generale est uniforme et sur une classe d'equations nouvelles d'ordre superieur dont l'integrale generale a ses points critiques fixes”, Ann. Sci. Ecole Normale Sup (3), 29 (1912), 1–126 | DOI | MR | Zbl

[7] T. Grava, A Its., A. Kapaev, F. Mezzadri, “On the Tracy-Widom$_\beta$ Distribution for $\beta = 6$”, SIGMA, 12 (2016), 105, 26 pp. | MR | Zbl

[8] A.M. Grundland, D. Riglioni, “Classical-quantum correspondence for shape-invariant systems”, J. Phys. A, 48:24 (2015), 245201–245215 | DOI | MR

[9] A. Hone, “Non-autonomous Hénon-Heiles systems”, Physica D, 118:1–2 (1998), 1–16 | DOI | MR | Zbl

[10] H. Kawakami, Four-dimensional Painleve-type equations associated with ramified linear equations III: Garnier systems and Fuji-Suzuki systems, 2017, arXiv: 1703.01379v2

[11] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of 4-dimensional Painleve-type equations, 2012, arXiv: 1209.3836 | MR

[12] H. Kawamuko, “On the Garnier system of half-integer type in two variables”, Funkcial. Ekvac., 52:2 (2009), 181–201 | DOI | MR | Zbl

[13] H. Kimura, “The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure”, Annali di Matematica pura et applicata IV, 155:1 (1989), 25–74 | DOI | MR | Zbl

[14] A.M. Levin, M.A. Olshanetsky, A.V. Zotov, “Planck Constant as Spectral Parameter in Integrable Systems and KZB Equations”, Journal of High Energy Physics, 2014 (2014), 109, 29 pp. | DOI | MR | Zbl

[15] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations”, J. Math. Phys., 52:8 (2011), 16 pp. | DOI | MR | Zbl

[16] H. Nagoya, Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Annales Henri Poincare, 15:3 (2014), 313–344 | DOI | MR | Zbl

[17] D. P. Novikov, “A monodromy problem and some functions connected with Painlevé 6”, International Conference “Painleve equations and Related Topics”, Proceedings of International Conference, Euler International Mathematical Institute, St.-Petrsburg, 2011, 118–121

[18] V. Periwal, D. Shevitz, “Unitary-matrix models as exactly solvable string theories”, Phys. Rev. Lett., 64:12 (1990), 1326–1329 | DOI | MR

[19] H. Rosengren, Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation, 2013, arXiv: 1312.5879 | MR

[20] H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Commun. Math. Phys., 349:3 (2015), 1143–1170 | DOI | MR

[21] I. Rumanov, Hard edge for beta-ensembles and Painleve III, 2012, arXiv: 1212.5333 | MR

[22] I. Rumanov, “Classical integrability for beta-ensembles and general Fokker-Planck equations”, J. Math. Phys., 56:1 (2015), 16 pp. | DOI | MR | Zbl

[23] I. Rumanov, Beta ensembles, quantum Painlevé equations and isomonodromy systems, 2014, arXiv: 1408.3847 | MR

[24] I. Rumanov, Painlevé representation of Tracy-Widom$_\beta$ distribution for $\beta = 6$, 2014, arXiv: 1408.3779 | MR

[25] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields”, Publ. Rims Kyoto Uiv., 15:17 (1979), 201–278 | DOI | MR | Zbl

[26] A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507, 19 pp. | DOI | MR | Zbl

[27] A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 | DOI | MR | Zbl

[28] Garifullin P. H., Suleimanov B. I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, Zhurn. Eks. i Teor. Fiz., 137:1 (2010), 149–165

[29] Garifullin P. H., “Sdvig fazy dlya sovmestnogo resheniya uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufimskii matematicheskii zhurnal, 4:2 (2012), 80–86 | MR

[30] Garifullin P. H., “O sovmestnom reshenii uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufimskii matematicheskii zhurnal, 8:4 (2016), 53–62

[31] Gromak V. I., “O nelineinykh differentsialnykh uravneniyakh chetvertogo poryadka so svoistvom Penleve”, Diff. uravn., 42:8 (2006), 1017–1026 | MR | Zbl

[32] Zotov A. V., Smirnov A. V., “Modifikatsiya rassloenii, ellipticheskie integriruemye sistemy i svyazannye zadachi”, TMF, 177:1 (2013), 3–67 | DOI | Zbl

[33] Its A. R., “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 530–565 | MR | Zbl

[34] Kitaev A. V., “Tochki povorota lineinykh sistem i dvoinye asimptotiki transtsendentov Penleve”, Zapiski LOMI, 187, 1991, 53–74

[35] Levin A. M., Olshanetskii M. A., Zotov A. V., “Klassifikatsiya izomonodromnykh zadach na ellipticheskikh krivykh”, UMN, 69:1(415) (2014), 39–124 | DOI | MR | Zbl

[36] Novikov D. P., “O sisteme Shlezingera s matritsami razmera $2\times2$ i uravnenii Belavina–Polyakova–Zamolodchikova”, TMF, 161:2 (2009), 191–203 | DOI | MR | Zbl

[37] Novikov D. P., Romanovskii R. K., Sadovnichuk S. G., Nekotorye novye metody konechnozonnogo integrirovaniya solitonnykh uravnenii, Nauka, Novosibirsk, 2013, 251 pp.

[38] Novikov D. P., Suleimanov B. I., “"Kvantovaniya" izomonodromnoi gamiltonovoi sistemy Garne s dvumya stepenyami svobody”, TMF, 187:1 (2016), 39–57 | DOI | MR | Zbl

[39] Culeimanov B. I., “Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, In-t mat., Ufa, 1988, 93–102

[40] Culeimanov B. I., “Gamiltonovoct uravnenii Penleve i metod izomonodromnykh deformatsii”, Diff. uravn., 30:5 (1994), 791–796 | MR

[41] Culeimanov B. I., ““Kvantovaniya” vtorogo uravneniya Penleve i problema ekvivalentnosti ego $L,A$ par”, Teor. i mat. fiz., 156:3 (2008), 364–378 | DOI | MR

[42] Suleimanov B. I., ““Kvantovaniya” vysshikh gamiltonovykh analogov uravnenii Penleve I i II s dvumya stepenyami svobody”, Funktsionalnyi analiz i ego prilozheniya, 48:3 (2014), 52–62 | DOI | MR | Zbl

[43] Culeimanov B. I., “Kvantovanie nekotorykh avtonomnykh reduktsii uravnenii Penleve i staraya kvantovaya teoriya”, Tezisy mezhdunarodnoi konferentsii, posvyaschennoi pamyati I. G. Petrovskogo «23-e sovmestnoe zasedanie Moskovskogo matematicheskogo obschestva i seminara imeni I. G. Petrovskogo» (Moskva, 2011), 356–357

[44] Suleimanov B. I., ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh $L-A$ par”, Ufimskii matematicheskii zhurnal, 4:2 (2012), 127–135 | MR

[45] Suleimanov B. I., “Kvantovye aspekty integriruemosti tretego uravneniya Penleve i resheniya vremennogo uravneniya Shredingera s potentsialom Morsa”, Ufimskii matematicheskii zhurnal, 8:3 (2016), 141–159 | MR

[46] Suleimanov B. I., “Vliyanie maloi dispersii na samofokusirovku v prostranstvenno odnomernom sluchae”, Pisma v ZhETF, 106:6 (2017), 375–380