Mots-clés : quantization, Painlevé equations, isomonodromic deformations method.
@article{UFA_2017_9_4_a9,
author = {V. A. Pavlenko and B. I. Suleimanov},
title = {{\textquotedblleft}Quantizations{\textquotedblright} of isomonodromic {Hamilton} system $H^{\frac{7}{2}+1}$},
journal = {Ufa mathematical journal},
pages = {97--107},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a9/}
}
V. A. Pavlenko; B. I. Suleimanov. “Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 97-107. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a9/
[1] A. Bloemendal, B. Virag, “Limits of spiked random matrices I”, Probability Theory and Related Fields, 156:3–4 (2013), 795–825 | DOI | MR | Zbl
[2] A. Bloemendal, B. Virag, Limits of spiked random matrices II, 2011, arXiv: 1109.3704 | MR
[3] R. Conte, I. Dornic, “The master Painlevé VI heat equation”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR | Zbl
[4] P.A. Clarkson, N. Joshi, A. Pickering, “Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach”, Inverse problems, 15:1 (1999), 175–187 | DOI | MR | Zbl
[5] M.V. Demina, N.A. Kudryashov, “Polygons of differential equations for finding exact solutions”, Chaos, Solitons and Fractals, 33:5 (2007), 1480–1496 | DOI | MR | Zbl
[6] R. Garnier, “Sur des equations differentielles du troisieme ordre dont l'integrale generale est uniforme et sur une classe d'equations nouvelles d'ordre superieur dont l'integrale generale a ses points critiques fixes”, Ann. Sci. Ecole Normale Sup (3), 29 (1912), 1–126 | DOI | MR | Zbl
[7] T. Grava, A Its., A. Kapaev, F. Mezzadri, “On the Tracy-Widom$_\beta$ Distribution for $\beta = 6$”, SIGMA, 12 (2016), 105, 26 pp. | MR | Zbl
[8] A.M. Grundland, D. Riglioni, “Classical-quantum correspondence for shape-invariant systems”, J. Phys. A, 48:24 (2015), 245201–245215 | DOI | MR
[9] A. Hone, “Non-autonomous Hénon-Heiles systems”, Physica D, 118:1–2 (1998), 1–16 | DOI | MR | Zbl
[10] H. Kawakami, Four-dimensional Painleve-type equations associated with ramified linear equations III: Garnier systems and Fuji-Suzuki systems, 2017, arXiv: 1703.01379v2
[11] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of 4-dimensional Painleve-type equations, 2012, arXiv: 1209.3836 | MR
[12] H. Kawamuko, “On the Garnier system of half-integer type in two variables”, Funkcial. Ekvac., 52:2 (2009), 181–201 | DOI | MR | Zbl
[13] H. Kimura, “The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure”, Annali di Matematica pura et applicata IV, 155:1 (1989), 25–74 | DOI | MR | Zbl
[14] A.M. Levin, M.A. Olshanetsky, A.V. Zotov, “Planck Constant as Spectral Parameter in Integrable Systems and KZB Equations”, Journal of High Energy Physics, 2014 (2014), 109, 29 pp. | DOI | MR | Zbl
[15] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations”, J. Math. Phys., 52:8 (2011), 16 pp. | DOI | MR | Zbl
[16] H. Nagoya, Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Annales Henri Poincare, 15:3 (2014), 313–344 | DOI | MR | Zbl
[17] D. P. Novikov, “A monodromy problem and some functions connected with Painlevé 6”, International Conference “Painleve equations and Related Topics”, Proceedings of International Conference, Euler International Mathematical Institute, St.-Petrsburg, 2011, 118–121
[18] V. Periwal, D. Shevitz, “Unitary-matrix models as exactly solvable string theories”, Phys. Rev. Lett., 64:12 (1990), 1326–1329 | DOI | MR
[19] H. Rosengren, Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation, 2013, arXiv: 1312.5879 | MR
[20] H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Commun. Math. Phys., 349:3 (2015), 1143–1170 | DOI | MR
[21] I. Rumanov, Hard edge for beta-ensembles and Painleve III, 2012, arXiv: 1212.5333 | MR
[22] I. Rumanov, “Classical integrability for beta-ensembles and general Fokker-Planck equations”, J. Math. Phys., 56:1 (2015), 16 pp. | DOI | MR | Zbl
[23] I. Rumanov, Beta ensembles, quantum Painlevé equations and isomonodromy systems, 2014, arXiv: 1408.3847 | MR
[24] I. Rumanov, Painlevé representation of Tracy-Widom$_\beta$ distribution for $\beta = 6$, 2014, arXiv: 1408.3779 | MR
[25] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields”, Publ. Rims Kyoto Uiv., 15:17 (1979), 201–278 | DOI | MR | Zbl
[26] A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507, 19 pp. | DOI | MR | Zbl
[27] A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 | DOI | MR | Zbl
[28] Garifullin P. H., Suleimanov B. I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, Zhurn. Eks. i Teor. Fiz., 137:1 (2010), 149–165
[29] Garifullin P. H., “Sdvig fazy dlya sovmestnogo resheniya uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufimskii matematicheskii zhurnal, 4:2 (2012), 80–86 | MR
[30] Garifullin P. H., “O sovmestnom reshenii uravneniya KDV i differentsialnogo uravneniya pyatogo poryadka”, Ufimskii matematicheskii zhurnal, 8:4 (2016), 53–62
[31] Gromak V. I., “O nelineinykh differentsialnykh uravneniyakh chetvertogo poryadka so svoistvom Penleve”, Diff. uravn., 42:8 (2006), 1017–1026 | MR | Zbl
[32] Zotov A. V., Smirnov A. V., “Modifikatsiya rassloenii, ellipticheskie integriruemye sistemy i svyazannye zadachi”, TMF, 177:1 (2013), 3–67 | DOI | Zbl
[33] Its A. R., “«Izomonodromnye» resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 530–565 | MR | Zbl
[34] Kitaev A. V., “Tochki povorota lineinykh sistem i dvoinye asimptotiki transtsendentov Penleve”, Zapiski LOMI, 187, 1991, 53–74
[35] Levin A. M., Olshanetskii M. A., Zotov A. V., “Klassifikatsiya izomonodromnykh zadach na ellipticheskikh krivykh”, UMN, 69:1(415) (2014), 39–124 | DOI | MR | Zbl
[36] Novikov D. P., “O sisteme Shlezingera s matritsami razmera $2\times2$ i uravnenii Belavina–Polyakova–Zamolodchikova”, TMF, 161:2 (2009), 191–203 | DOI | MR | Zbl
[37] Novikov D. P., Romanovskii R. K., Sadovnichuk S. G., Nekotorye novye metody konechnozonnogo integrirovaniya solitonnykh uravnenii, Nauka, Novosibirsk, 2013, 251 pp.
[38] Novikov D. P., Suleimanov B. I., “"Kvantovaniya" izomonodromnoi gamiltonovoi sistemy Garne s dvumya stepenyami svobody”, TMF, 187:1 (2016), 39–57 | DOI | MR | Zbl
[39] Culeimanov B. I., “Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, In-t mat., Ufa, 1988, 93–102
[40] Culeimanov B. I., “Gamiltonovoct uravnenii Penleve i metod izomonodromnykh deformatsii”, Diff. uravn., 30:5 (1994), 791–796 | MR
[41] Culeimanov B. I., ““Kvantovaniya” vtorogo uravneniya Penleve i problema ekvivalentnosti ego $L,A$ par”, Teor. i mat. fiz., 156:3 (2008), 364–378 | DOI | MR
[42] Suleimanov B. I., ““Kvantovaniya” vysshikh gamiltonovykh analogov uravnenii Penleve I i II s dvumya stepenyami svobody”, Funktsionalnyi analiz i ego prilozheniya, 48:3 (2014), 52–62 | DOI | MR | Zbl
[43] Culeimanov B. I., “Kvantovanie nekotorykh avtonomnykh reduktsii uravnenii Penleve i staraya kvantovaya teoriya”, Tezisy mezhdunarodnoi konferentsii, posvyaschennoi pamyati I. G. Petrovskogo «23-e sovmestnoe zasedanie Moskovskogo matematicheskogo obschestva i seminara imeni I. G. Petrovskogo» (Moskva, 2011), 356–357
[44] Suleimanov B. I., ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh $L-A$ par”, Ufimskii matematicheskii zhurnal, 4:2 (2012), 127–135 | MR
[45] Suleimanov B. I., “Kvantovye aspekty integriruemosti tretego uravneniya Penleve i resheniya vremennogo uravneniya Shredingera s potentsialom Morsa”, Ufimskii matematicheskii zhurnal, 8:3 (2016), 141–159 | MR
[46] Suleimanov B. I., “Vliyanie maloi dispersii na samofokusirovku v prostranstvenno odnomernom sluchae”, Pisma v ZhETF, 106:6 (2017), 375–380