Some properties of Jost functions for Schrödinger equation with distribution potential
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 59-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the substantial extension of the space of the potentials in the inverse scattering problem for the linear Schrödinger equation on the real axis. We consider the Schrödinger operator with a potential in the space of generalized functions. This extension includes not only the potential like delta function, but also exotic cases like Cantor functions. In this way we establish the conditions on existence and uniqueness of Jost solutions. We study their analytic properties. We provide some estimates for the Jost solutions and their derivatives. We show that the Schrödinger equation with the distribution potential can be uniformly approximated by the equations with smooth potentials.
Keywords: inverse scattering problem, Schrödinger equation, Jost functions, delta-type potential, singular potential, distribution potential.
@article{UFA_2017_9_4_a6,
     author = {R. Ch. Kulaev and A. B. Shabat},
     title = {Some properties of {Jost} functions for {Schr\"odinger} equation with distribution potential},
     journal = {Ufa mathematical journal},
     pages = {59--71},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a6/}
}
TY  - JOUR
AU  - R. Ch. Kulaev
AU  - A. B. Shabat
TI  - Some properties of Jost functions for Schrödinger equation with distribution potential
JO  - Ufa mathematical journal
PY  - 2017
SP  - 59
EP  - 71
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a6/
LA  - en
ID  - UFA_2017_9_4_a6
ER  - 
%0 Journal Article
%A R. Ch. Kulaev
%A A. B. Shabat
%T Some properties of Jost functions for Schrödinger equation with distribution potential
%J Ufa mathematical journal
%D 2017
%P 59-71
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a6/
%G en
%F UFA_2017_9_4_a6
R. Ch. Kulaev; A. B. Shabat. Some properties of Jost functions for Schrödinger equation with distribution potential. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 59-71. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a6/

[1] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4(88) (1959), 57–119 | MR | Zbl

[2] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Comm. Pure Appl. Math., 32 (1979), 121–251 | DOI | MR | Zbl

[3] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[4] Savchuk A. M., Shkalikov A. A., “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funktsionalnyi analiz i ego prilozheniya, 44:4 (2010), 34–53 | DOI | MR | Zbl

[5] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[6] R. O. Hryniv, Ya. V. Mykytyuk, “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 | DOI | MR | Zbl

[7] Badakhov M. Sh., Shabat A. B., “O preobrazovaniyakh Darbu v obratnoi zadache rasseyaniya”, UMZh, 8:4 (2016), 43–52 | MR

[8] Shabat A. B., “Obratnaya spektralnaya zadacha dlya deltaobraznykh potentsialov”, Pisma v ZhETF, 102:9 (2015), 705–708

[9] Shabat A. B., “Raznostnoe uravnenie Shrëdingera i kvazisimmetricheskie mnogochleny”, TMF, 184:2 (2015), 16–27 | DOI

[10] Kulaev R. Ch., Shabat A. B., Obratnaya zadacha rasseyaniya dlya finitnykh potentsialov v prostranstve mer Borelya, Preprint YuMI VNTs RAN No 2, 2016

[11] Koddington E., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izdatelstvo LKI, M., 2007