@article{UFA_2017_9_4_a4,
author = {Y. Sh. Il'yasov and E. E. Kholodnov},
title = {On global instability of solutions to hyperbolic equations with {non-Lipschitz} nonlinearity},
journal = {Ufa mathematical journal},
pages = {44--53},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a4/}
}
TY - JOUR AU - Y. Sh. Il'yasov AU - E. E. Kholodnov TI - On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity JO - Ufa mathematical journal PY - 2017 SP - 44 EP - 53 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a4/ LA - en ID - UFA_2017_9_4_a4 ER -
Y. Sh. Il'yasov; E. E. Kholodnov. On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 44-53. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a4/
[1] H. Brezis, “Solutions of variational inequalities with compact support”, Uspekhi Mat. Nauk, 129 (1974), 103–108 | MR
[2] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Pitman Research Notes in Mathematics Series, 106, 1985 | MR | Zbl
[3] J. I. Díaz, “On the Haïm Brezis pioneering contributions on the location of free boundaries”, Proceedings of the Fifth European Conference on Elliptic and Parabolic Problems, A special tribute to the work of Haïm Brezis, eds. M. Chipot et al., Birkhauser Verlag, Bassel, 2005, 217–234 | MR | Zbl
[4] J. I. Díaz, J. Hernández, Y. Ilyasov, “Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for $N\geq 3$”, Chinese Annals of Mathematics. Series B, 38:1 (2017), 345–378 | DOI | MR | Zbl
[5] J. I. Díaz, J. Hernández, Y. Ilyasov, “On the existence of positive solutions and solutions with compact support for a spectral nonlinear elliptic problem with strong absorption”, Nonlinear Analysis Series A: Theory, Mehods and Applications, 119 (2015), 484–500 | MR | Zbl
[6] E. DiBenedetto, “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7:8 (1983), 827–850 | DOI | MR | Zbl
[7] Y.S. Il'yasov, “Nonlocal investigations of bifurcations of solutions of nonlinear elliptic equations”, Izv. Math., 66:6 (2002), 1103–1130 | DOI | MR | Zbl
[8] Y. S. Ilyasov, Y. Egorov, “Höpf maximum principle violation for elliptic equations with non-Lipschitz nonlinearity”, Nonlin. Anal., 72 (2010), 3346–3355 | DOI | MR | Zbl
[9] Y. Il'yasov, “A duality principle corresponding to the parabolic equations”, Physica D: Nonlinear Phenomena, 237:5 (2008), 692–698 | DOI | MR | Zbl
[10] Y. S. Il'yasov, “On critical exponent for an elliptic equation with non-Lipschitz nonlinearity”, Dynamical Systems, 2011, Supplement, 698–706 | MR | Zbl
[11] Y. S. Il'yasov, “On extreme values of Nehari manifold method via nonlinear Rayleigh's Quotient”, Topological Methods in Nonlinear Analysis, 6 (2016), 1–31 | MR
[12] G. M. Lieberman, “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12:11 (1988), 1203–1219 | DOI | MR | Zbl
[13] L. E. Payne, D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations”, Israel Journal of Mathematics, 22:3 (1975), 273–303 | DOI | MR
[14] S.I. Pohozaev, “On the method of fibering a solution in nonlinear boundary value problems”, Proc. Stekl. Ins. Math., 192 (1990), 146–163 | MR | Zbl
[15] D. H. Sattinger, “On global solution of nonlinear hyperbolic equations”, Archive for Rational Mechanics and Analysis, 30:2 (1968), 148–172 | DOI | MR | Zbl
[16] J. Serrin, H. Zou, “Symmetry of ground states of quasilinear elliptic equations”, Archive for Rational Mechanics and Analysis, 148:4 (1999), 265–290 | DOI | MR | Zbl
[17] P. Tolksdorf, “Regularity for a more general class of quasilinear elliptic equations”, J. Differential Equations, 51:1 (1984), 126–150 | DOI | MR | Zbl