Minimum modulus of lacunary power series and $h$-measure of exceptional sets
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 135-144
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series.
Let $f(z)=\sum_{k=0}^{+\infty}f_kz^{n_k}$, where $(n_k)$ is a strictly
increasing sequence of non-negative integers. We denote by
\begin{align*}
(r)=\max\{|f(z)|\colon |z|=r\},
\\
(r)=\min\{|f(z)|\colon |z|=r\},
\\
\mu_f(r)=\max\{|f_k|r^{n_k}\colon k\geq 0\}
\end{align*}
the maximum modulus,
the minimum modulus and the maximum term of $f,$ respectively.
Let $h(r)$ be a positive continuous function
increasing to infinity on $[1,+\infty)$ with a non-decreasing
derivative. For a measurable set $E\subset [1,+\infty)$ we introduce
$h-\mathrm{meas}\,(E)=\int_{E}\frac{dh(r)}{r}.$
In this paper we establish
conditions guaranteeing that the relations
$$
M_f(r)=(1+o(1)) m_f(r),\quad M_f(r)=(1+o(1))\mu_f(r)
$$
are true as $r\to+\infty$ outside some exceptional set $E$ such that $h-\mathrm{meas}\,(E)+\infty$. For some subclasses we obtain necessary and sufficient conditions. We also provide similar
results for entire Dirichlet series.
Keywords:
lacunary power series, minimum modulus, maximum modulus, entire Dirichlet series, exceptional set, $h$-measure.
Mots-clés : maximal term
Mots-clés : maximal term
@article{UFA_2017_9_4_a13,
author = {T. M. Salo and O. B. Skaskiv},
title = {Minimum modulus of lacunary power series and $h$-measure of exceptional sets},
journal = {Ufa mathematical journal},
pages = {135--144},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/}
}
TY - JOUR AU - T. M. Salo AU - O. B. Skaskiv TI - Minimum modulus of lacunary power series and $h$-measure of exceptional sets JO - Ufa mathematical journal PY - 2017 SP - 135 EP - 144 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/ LA - en ID - UFA_2017_9_4_a13 ER -
T. M. Salo; O. B. Skaskiv. Minimum modulus of lacunary power series and $h$-measure of exceptional sets. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 135-144. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/