Mots-clés : maximal term
@article{UFA_2017_9_4_a13,
author = {T. M. Salo and O. B. Skaskiv},
title = {Minimum modulus of lacunary power series and $h$-measure of exceptional sets},
journal = {Ufa mathematical journal},
pages = {135--144},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/}
}
T. M. Salo; O. B. Skaskiv. Minimum modulus of lacunary power series and $h$-measure of exceptional sets. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 135-144. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/
[1] P.C. Fenton, “The minimum modulus of gap power series”, Proc. Edinburgh Math. Soc. II., 21:1 (1978), 49–54 | DOI | MR | Zbl
[2] P. Erdös, A.J. Macintyre, “Integral functions with gap power series”, Proc. Edinburgh Math. Soc. II, 10:2 (1954), 62–70 | DOI | MR | Zbl
[3] O.B. Skaskiv, “Maximum of the modulus and maximal term of an integral Dirichlet series”, Dop. Akad. Nauk Ukr. SSR, Ser. A, 11 (1984), 22–24 (in Ukrainian) | MR | Zbl
[4] R.P. Srivastava, “On the entire functions and their derivatives represented by Dirichlet series”, Ganita, 9:2 (1958), 82–92 | MR
[5] Math. USSR. Sb., 59:2 (1988), 379–396 | DOI | MR | Zbl
[6] T.M. Salo, O.B. Skaskiv, O.M. Trakalo, “On the best possible description of exceptional set in Wiman–Valiron theory for entire functions”, Matem. Stud., 16:2 (2001), 131–140 | MR | Zbl
[7] T. Salo, O. Skaskiv, “On the maximum modulus and maximal term absolute convergent Dirichlet series”, Mat. Visn. Nauk. Tov. Im. Shevchenka, 4 (2007), 564–574 (in Ukrainian)
[8] M.R. Lutsyshyn, O.B. Skaskiv, “Asymptotic properties of a multiple Dirichlet series”, Matem. Stud., 3 (1994), 41–48 (in Ukrainian) | MR
[9] S. Mandelbrojt, Dirichlet series, Principles and methods Reidel Publishing Company, Dordrecht, 1972 | MR