Minimum modulus of lacunary power series and $h$-measure of exceptional sets
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 135-144

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some generalizations of Fenton theorem for the entire functions represented by lacunary power series. Let $f(z)=\sum_{k=0}^{+\infty}f_kz^{n_k}$, where $(n_k)$ is a strictly increasing sequence of non-negative integers. We denote by \begin{align*} (r)=\max\{|f(z)|\colon |z|=r\}, \\ (r)=\min\{|f(z)|\colon |z|=r\}, \\ \mu_f(r)=\max\{|f_k|r^{n_k}\colon k\geq 0\} \end{align*} the maximum modulus, the minimum modulus and the maximum term of $f,$ respectively. Let $h(r)$ be a positive continuous function increasing to infinity on $[1,+\infty)$ with a non-decreasing derivative. For a measurable set $E\subset [1,+\infty)$ we introduce $h-\mathrm{meas}\,(E)=\int_{E}\frac{dh(r)}{r}.$ In this paper we establish conditions guaranteeing that the relations $$ M_f(r)=(1+o(1)) m_f(r),\quad M_f(r)=(1+o(1))\mu_f(r) $$ are true as $r\to+\infty$ outside some exceptional set $E$ such that $h-\mathrm{meas}\,(E)+\infty$. For some subclasses we obtain necessary and sufficient conditions. We also provide similar results for entire Dirichlet series.
Keywords: lacunary power series, minimum modulus, maximum modulus, entire Dirichlet series, exceptional set, $h$-measure.
Mots-clés : maximal term
@article{UFA_2017_9_4_a13,
     author = {T. M. Salo and O. B. Skaskiv},
     title = {Minimum modulus of lacunary power series and $h$-measure of exceptional sets},
     journal = {Ufa mathematical journal},
     pages = {135--144},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/}
}
TY  - JOUR
AU  - T. M. Salo
AU  - O. B. Skaskiv
TI  - Minimum modulus of lacunary power series and $h$-measure of exceptional sets
JO  - Ufa mathematical journal
PY  - 2017
SP  - 135
EP  - 144
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/
LA  - en
ID  - UFA_2017_9_4_a13
ER  - 
%0 Journal Article
%A T. M. Salo
%A O. B. Skaskiv
%T Minimum modulus of lacunary power series and $h$-measure of exceptional sets
%J Ufa mathematical journal
%D 2017
%P 135-144
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/
%G en
%F UFA_2017_9_4_a13
T. M. Salo; O. B. Skaskiv. Minimum modulus of lacunary power series and $h$-measure of exceptional sets. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 135-144. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a13/