Quasi-elliptic functions
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We study certain generalizations of elliptic functions, namely quasi-elliptic functions.
Let $p = e^{i\alpha},$ $q = e^{i\beta},$ $\alpha,\, \beta \in \mathbb{R}.$ A meromorphic in $\mathbb{C}$ function $g$ is called quasi-elliptic if there exist $\omega_1, \omega_2 \in \mathbb{C}^{*},$ $\mathrm{Im}
\frac{\omega_2}{\omega_1} > 0,$ such that
$g(u+\omega_1)=pg(u)$, $g(u+\omega_2)=qg(u)$
for each $u\in\mathbb{C}$.
In the case $\alpha = \beta = 0 \mod 2\pi$ this is a classical theory of elliptic functions. A class of quasi-elliptic functions is denoted by $\mathcal{QE}.$ We show that the class $\mathcal{QE}$ is nontrivial. For this class of functions we construct
analogues $\wp_{\alpha \beta}$, $\zeta_{\alpha \beta}$ of $\wp$ and $\zeta$ Weierstrass functions. Moreover, these analogues are in fact the generalizations of the classical $\wp$ and $\zeta$ functions in such a way that the latter can be found among the former by letting $\alpha=0$ and $\beta=0$. We also study an analogue of the Weierstrass $\sigma$ function and establish connections between this function and $\wp_{\alpha \beta}$ as well as $\zeta_{\alpha \beta}$.
Let $q, p \in\mathbb{C}^*,$ $|q|1.$ A meromorphic in $\mathbb{C^{*}}$ function $f$ is said to be $p$-loxodromic of multiplicator $q$ if for each $z
\in \mathbb{C}^{*}$
$f(qz) = pf(z).$ We obtain telations between quasi-elliptic and $p$-loxodromic functions.
Keywords:
quasi-elliptic function, the Weierstrass $\wp$-function, the Weierstrass $\zeta$-function, the Weierstrass $\sigma$-function,
$p$-loxodromic function.
@article{UFA_2017_9_4_a12,
author = {A. Ya. Khrystiyanyn and Dz. V. Lukivska},
title = {Quasi-elliptic functions},
journal = {Ufa mathematical journal},
pages = {127--134},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a12/}
}
A. Ya. Khrystiyanyn; Dz. V. Lukivska. Quasi-elliptic functions. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 127-134. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a12/