Dirichlet boundary value problem in half-strip for fractional differential equation with Bessel operator and Riemann–Liouville partial derivative
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 114-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we study the Dirichlet boundary value problem in a half-strip for a fractional differential equations with the Bessel operator and the Riemann–Liouville partial derivatives. We formulate the unique solvability theoresm for the considered problem. We find the representations for the solutions in terms of the integral transform with the Wright function in the kernel. The proof of the existence theorem is made on the base of the mentioned integral transform and the modified Bessel function of first kind. The uniqueness of the solutions is shown in the class of the functions satisfying an analogue of Tikhonov equation. In the case, when the considered equations is the fractional order diffusion equation, we show that the obtained solutions coincides with the known solution to the Dirichlet problem for the corresponding equation. We also consider the case when the initial function is power in the spatial variable. In this case the solution to the problem is written out in terms of the Fox $H$-function.
Keywords: Bessel operator, Riemann–Liouville partial derivative, Wright function, integral transform with the function of Wright in the kernel, modified Bessel function of the first kind, Fox $H$-function, Tikhonov condition.
Mots-clés : fractional diffusion
@article{UFA_2017_9_4_a11,
     author = {F. G. Khushtova},
     title = {Dirichlet boundary value problem in half-strip for fractional differential equation with {Bessel} operator and {Riemann{\textendash}Liouville} partial derivative},
     journal = {Ufa mathematical journal},
     pages = {114--126},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a11/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - Dirichlet boundary value problem in half-strip for fractional differential equation with Bessel operator and Riemann–Liouville partial derivative
JO  - Ufa mathematical journal
PY  - 2017
SP  - 114
EP  - 126
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a11/
LA  - en
ID  - UFA_2017_9_4_a11
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T Dirichlet boundary value problem in half-strip for fractional differential equation with Bessel operator and Riemann–Liouville partial derivative
%J Ufa mathematical journal
%D 2017
%P 114-126
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a11/
%G en
%F UFA_2017_9_4_a11
F. G. Khushtova. Dirichlet boundary value problem in half-strip for fractional differential equation with Bessel operator and Riemann–Liouville partial derivative. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 114-126. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a11/

[1] Gekkieva S. Kh., “Zadacha Koshi dlya obobschennogo uravneniya perenosa s drobnoi po vremeni proizvodnoi”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 5:1 (2000), 16–19

[2] Gekkieva S. Kh., “Kraevaya zadacha dlya obobschennogo uravneniya perenosa s drobnoi proizvodnoi v polubeskonechnoi oblasti”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 1:8 (2002), 6–8

[3] Voroshilov A. A., Kilbas A. A., “Zadacha Koshi dlya diffuzionno-volnovogo uravneniya s chastnoi proizvodnoi Kaputo”, Differents. uravneniya, 42:5 (2006), 599–609 | MR | Zbl

[4] Voroshilov A. A., Kilbas A. A., “Zadacha tipa Koshi dlya diffuzionno-volnovogo uravneniya s chastnoi proizvodnoi Rimana–Liuvillya”, Doklady Akademii nauk, 406:1 (2006), 12–16 | MR | Zbl

[5] Kipriyanov I. A., Katrakhov V. V., Lyapin V. M., “O kraevykh zadachakh v oblastyakh obschego vida dlya singulyarnykh parabolicheskikh sistem uravnenii”, Dokl. AN SSSR, 230:6 (1976), 1271–1274 | MR | Zbl

[6] Kochubei A. N., “Diffuziya drobnogo poryadka”, Differents. uravneniya, 26:4 (1990), 660–670 | MR | Zbl

[7] Kochubei A. N., Eidelman S. D., “Zadacha Koshi dlya evolyutsionnykh uravnenii drobnogo poryadka”, Doklady Akademii nauk, 394:2 (2004), 159–161 | MR | Zbl

[8] Kuznetsov D. S., Spetsialnye funktsii, Vysshaya shkola, 1965, 424 pp. | MR

[9] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Fizmatlit, M., 1963, 358 pp. | MR

[10] Marichev O. I., Metod vychisleniya integralov ot spetsialnykh funktsii (teoriya i tablitsy formul), Nauka i tekhnika, Mn., 1978, 312 pp. | MR

[11] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[12] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp.

[13] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, v. 2, Nauka, M., 1983, 752 pp. | MR

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, v. 3, Nauka, M., 1986, 800 pp. | MR

[15] Pskhu A. B., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp. | MR

[16] Pskhu A. V., “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya”, Izvestiya RAN. Ser. matem., 73:2 (2009), 41–182 | MR

[17] Tersenov S. A., Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Sibirskoe otdelenie, M., 1985, 105 pp. | MR

[18] Uchaikin V. V., “Anizotropiya kosmicheskikh luchei v drobno-differentsialnykh modelyakh anomalnoi diffuzii”, ZhETF, 143:6 (2013), 1039–1047

[19] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. II, Nauka, M., 1969, 800 pp.

[20] Khushtova F. G., “Pervaya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Matem. zametki, 99:6 2016, 921–928 | DOI | MR | Zbl

[21] Khushtova F. G., “Fundamentalnoe reshenie modelnogo uravneniya anomalnoi diffuzii drobnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:4 (2015), 722–735 | DOI

[22] Khushtova F. G., “Vtoraya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Izvestiya vuzov. Matematika, 2017, no. 7, 84–93

[23] O. Arena, “On a Singular Parabolic Equation Related to Axiallly Symmetric Heat Potentials”, Annali di Mat. Pura Appl. Ser. IV, 105 (1975), 347–393 | DOI | MR | Zbl

[24] R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function, 2:4 (1999), 383–414 | MR | Zbl

[25] A.A. Kilbas, M. Saigo, H-Transform. Theory and Applications, Chapman and Hall/CRC, Boca Raton–London–New York–Washington, D.C., 2004, 389 pp. | MR

[26] A. N. Kochubei, “Cauchy Problem for Fractional Diffusion-Wave Equations with Variable Coefficients”, Journal Applicable Analysis, 93:19 (2014), 2211–2242 | DOI | MR | Zbl

[27] A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function. Theory and Applications, Springer, New York–Dordrecht–Heidelberg–London, 2010, 268 pp. | MR | Zbl

[28] R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, “Fractional model equation for anomalous diffusion”, Physica A, 211 (1994), 13–24 | DOI | MR

[29] R. Metzler, J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Physica A: Math. Gen., 37 (2004), R161–R208 | DOI | MR | Zbl

[30] V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers, v. I, Background and Theory, HEP/Springer, 2013, 385 pp. | MR