Operator of invariant differentiation and its application for integrating systems of ordinary differential equations
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 12-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an algorithm for integrating $n$-th order ordinary differential equations (ODE) admitting $n$-dimensional Lie algebras of operators. The algorithm is based on invariant representation of the equations by the invariants of the admitted Lie algebra and application of an operator of invariant differentiation of special type. We show that in the case of scalar equations this method is equivalent to the known order reduction methods. We study an applicability of the suggested algorithm to the systems of $m$ $k$-th order ODEs admitting $km$-dimensional Lie algebras of operators. For the admitted Lie algebra we obtain a condition ensuring the possibility to construct the operator of invariant differentiation of a special type and to reduce the order of the considered system of ODEs. This condition is the implication of the existence of nontrivial solutions to the systems of linear algebraic equations, where the coefficients are the structural constants of the Lie algebra. We present an algorithm for constructing the $(km-1)$-dimensional Lie algebra for the reduced system. The suggested approach is applied for integrating the systems of two second order equations.
Keywords: ordinary differential equations, Lie algebras of operators, differential invariants, operator of invariant differentiation.
@article{UFA_2017_9_4_a1,
     author = {R. K. Gazizov and A. A. Gainetdinova},
     title = {Operator of invariant differentiation and its application for integrating systems of ordinary differential equations},
     journal = {Ufa mathematical journal},
     pages = {12--21},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/}
}
TY  - JOUR
AU  - R. K. Gazizov
AU  - A. A. Gainetdinova
TI  - Operator of invariant differentiation and its application for integrating systems of ordinary differential equations
JO  - Ufa mathematical journal
PY  - 2017
SP  - 12
EP  - 21
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/
LA  - en
ID  - UFA_2017_9_4_a1
ER  - 
%0 Journal Article
%A R. K. Gazizov
%A A. A. Gainetdinova
%T Operator of invariant differentiation and its application for integrating systems of ordinary differential equations
%J Ufa mathematical journal
%D 2017
%P 12-21
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/
%G en
%F UFA_2017_9_4_a1
R. K. Gazizov; A. A. Gainetdinova. Operator of invariant differentiation and its application for integrating systems of ordinary differential equations. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 12-21. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/

[1] Li S., Sheffers G., Lektsii o differentsialnykh uravneniyakh s izvestnymi infinitezimalnymi preobrazovaniyami, M.–Izhevsk, 2011, 704 pp.

[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR

[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR

[4] N. H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Wiley, Chichester, 1999, 366 | MR

[5] G. W. Bluman, S. C. Anco, Symmetry and integration methods for differential equations, Springer-Verlag New-York, Inc., 2002, 419 | MR | Zbl

[6] Ar. Tresse, “Sur les invariants differentiels des groupes continus de transformations”, Acta Math., 18:1 (1894), 1–3 (French) | DOI | MR

[7] Shirokov I. V., “Differentsialnye invarianty gruppy preobrazovanii odnorodnogo prostranstva”, Sibirskii matematicheskii zhurnal, 48:6 (2007), 1405–1421 | MR | Zbl

[8] Goncharovskii M. M., Shirokov I. V., “Differentsialnye invarianty i operatory invariantnogo differentsirovaniya proetsiruemogo deistviya grupp Li”, TMF, 183:2 (2015), 202–221 | DOI | MR | Zbl

[9] Popovich R. E., Boiko V. N., “Differentsialnye invarianty odnoparametricheskoi gruppy lokalnykh preobrazovanii i integriruemye uravneniya Rikkati”, Vestnik SamGU, 2001, no. 4(18), 49–56

[10] Gaponova O. V., Nesterenko M. O., “Sistemi ZDR drugogo poryadku, invariantni vidnosno nizkorozmirnikh algebr Li”, Zbirnik prats Institutu matematiki NAN Ukraini, Kiiv, 3:2 (2006), 71–91 | Zbl

[11] M. Ayub, F. M. Mahomed, M. Khan, M. N. Qureshi, “Symmetries of second-order systems of ODEs and integrability”, Nonlinear Dyn., 74 (2013), 969–989 | DOI | MR | Zbl

[12] A. A. Gainetdinova, R. K. Gazizov, “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proc. R. Soc. A. The Royal Society, 473:2197 (2017), 20160461 | DOI | MR

[13] Gyunter N. M., Integrirovanie uravnenii pervogo poryadka v chastnykh proizvodnykh, ONTI, L.–M., 1934, 359 pp.