@article{UFA_2017_9_4_a1,
author = {R. K. Gazizov and A. A. Gainetdinova},
title = {Operator of invariant differentiation and its application for integrating systems of ordinary differential equations},
journal = {Ufa mathematical journal},
pages = {12--21},
year = {2017},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/}
}
TY - JOUR AU - R. K. Gazizov AU - A. A. Gainetdinova TI - Operator of invariant differentiation and its application for integrating systems of ordinary differential equations JO - Ufa mathematical journal PY - 2017 SP - 12 EP - 21 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/ LA - en ID - UFA_2017_9_4_a1 ER -
%0 Journal Article %A R. K. Gazizov %A A. A. Gainetdinova %T Operator of invariant differentiation and its application for integrating systems of ordinary differential equations %J Ufa mathematical journal %D 2017 %P 12-21 %V 9 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/ %G en %F UFA_2017_9_4_a1
R. K. Gazizov; A. A. Gainetdinova. Operator of invariant differentiation and its application for integrating systems of ordinary differential equations. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 12-21. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a1/
[1] Li S., Sheffers G., Lektsii o differentsialnykh uravneniyakh s izvestnymi infinitezimalnymi preobrazovaniyami, M.–Izhevsk, 2011, 704 pp.
[2] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR
[3] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR
[4] N. H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Wiley, Chichester, 1999, 366 | MR
[5] G. W. Bluman, S. C. Anco, Symmetry and integration methods for differential equations, Springer-Verlag New-York, Inc., 2002, 419 | MR | Zbl
[6] Ar. Tresse, “Sur les invariants differentiels des groupes continus de transformations”, Acta Math., 18:1 (1894), 1–3 (French) | DOI | MR
[7] Shirokov I. V., “Differentsialnye invarianty gruppy preobrazovanii odnorodnogo prostranstva”, Sibirskii matematicheskii zhurnal, 48:6 (2007), 1405–1421 | MR | Zbl
[8] Goncharovskii M. M., Shirokov I. V., “Differentsialnye invarianty i operatory invariantnogo differentsirovaniya proetsiruemogo deistviya grupp Li”, TMF, 183:2 (2015), 202–221 | DOI | MR | Zbl
[9] Popovich R. E., Boiko V. N., “Differentsialnye invarianty odnoparametricheskoi gruppy lokalnykh preobrazovanii i integriruemye uravneniya Rikkati”, Vestnik SamGU, 2001, no. 4(18), 49–56
[10] Gaponova O. V., Nesterenko M. O., “Sistemi ZDR drugogo poryadku, invariantni vidnosno nizkorozmirnikh algebr Li”, Zbirnik prats Institutu matematiki NAN Ukraini, Kiiv, 3:2 (2006), 71–91 | Zbl
[11] M. Ayub, F. M. Mahomed, M. Khan, M. N. Qureshi, “Symmetries of second-order systems of ODEs and integrability”, Nonlinear Dyn., 74 (2013), 969–989 | DOI | MR | Zbl
[12] A. A. Gainetdinova, R. K. Gazizov, “Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras”, Proc. R. Soc. A. The Royal Society, 473:2197 (2017), 20160461 | DOI | MR
[13] Gyunter N. M., Integrirovanie uravnenii pervogo poryadka v chastnykh proizvodnykh, ONTI, L.–M., 1934, 359 pp.