Existence tests for limiting cycles of second order differential equations
Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to finding limiting cycles in the vicinity of equilibria of second order nonlinear differential equations. We obtain new conditions for the coefficients of the equations ensuring the existence of a limiting cycle by employing the methods of qualitative analysis and computer modeling. We study the behavior of a singular point under variation of the parameters and we apply the Lyapunov stability theory. On the base of the obtained results, we make a sector partition of the plane. This partition allows us to predict the behavior of the solutions in various parts of the plane. We develop a package of computer programs for constructing a phase portrait in the corresponding domains.
Keywords: dynamical systems, nonsmoothness, limiting cycles
Mots-clés : phase portraits, sectorial partitions.
@article{UFA_2017_9_4_a0,
     author = {M. K. Arabov and E. M. Mukhamadiev and I. D. Nurov and Kh. I. Sobirov},
     title = {Existence tests for limiting cycles of second order differential equations},
     journal = {Ufa mathematical journal},
     pages = {3--11},
     year = {2017},
     volume = {9},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a0/}
}
TY  - JOUR
AU  - M. K. Arabov
AU  - E. M. Mukhamadiev
AU  - I. D. Nurov
AU  - Kh. I. Sobirov
TI  - Existence tests for limiting cycles of second order differential equations
JO  - Ufa mathematical journal
PY  - 2017
SP  - 3
EP  - 11
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a0/
LA  - en
ID  - UFA_2017_9_4_a0
ER  - 
%0 Journal Article
%A M. K. Arabov
%A E. M. Mukhamadiev
%A I. D. Nurov
%A Kh. I. Sobirov
%T Existence tests for limiting cycles of second order differential equations
%J Ufa mathematical journal
%D 2017
%P 3-11
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a0/
%G en
%F UFA_2017_9_4_a0
M. K. Arabov; E. M. Mukhamadiev; I. D. Nurov; Kh. I. Sobirov. Existence tests for limiting cycles of second order differential equations. Ufa mathematical journal, Tome 9 (2017) no. 4, pp. 3-11. http://geodesic.mathdoc.fr/item/UFA_2017_9_4_a0/

[1] Arnold V. I., Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, Redaktsiya zhurnala «Regulyarnaya i khaoticheskaya dinamika», M.–Izhevsk, 2000, 400 pp. | MR

[2] Filippov A. F., Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2004, 239 pp.

[3] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1976, 496 pp. | MR

[4] Yumagulov M. G., Vvedenie v teoriyu dinamicheskikh sistem, uchebnoe posobie, Iz-vo «Lan», SPb., 2015, 272 pp.

[5] Ivanov A. P., “Issledovanie razryvnykh bifurkatsii v negladkikh dinamicheskikh sistemakh”, Nelineinaya dinamika, 8:2 (2012), 231–247

[6] Katok A. B., Khasselblat B., Vvedenie v teoriyu dinamicheskikh sistem, MTsNMO, M., 2005, 454 pp.

[7] R. I. Leine, D. H. Van Campen, “Bifurcation phenomena in non-smooth dynamical systems”, European Journal of Mechanigs A/Solids, 5 (2006), 595–616 | DOI | MR

[8] Mukhamadiev E. M., Nurov I. D., Khalilova M. Sh., “Predelnye tsikly kusochno-lineinykh differentsialnykh uravnenii vtorogo poryadka”, Ufimskii matematicheskii zhurnal, 6:1 (2014), 84–93

[9] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR