Invariant subspaces with zero density spectrum
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 100-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we show that each analytic solution of a homogeneous convolution equation with the characteristic function of minimal exponential type is represented by a series of exponential polynomials in its domain. This series converges absolutely and uniformly on compact subsets in this domain. It is known that if the characteristic function is of minimal exponential type, the density of its zero set is equal to zero. This is why in the work we consider the sequences of exponents having zero density. We provide a simple description of the space of the coefficients for the aforementioned series. Moreover, we provide a complete description of all possible system of functions constructed by rather small groups, for which the representation by the series of exponential polynomials holds.
Keywords: A series of exponential monomials, relatively small clusters, basis
Mots-clés : convex domain.
@article{UFA_2017_9_3_a9,
     author = {O. A. Krivosheeva},
     title = {Invariant subspaces with  zero density spectrum},
     journal = {Ufa mathematical journal},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a9/}
}
TY  - JOUR
AU  - O. A. Krivosheeva
TI  - Invariant subspaces with  zero density spectrum
JO  - Ufa mathematical journal
PY  - 2017
SP  - 100
EP  - 108
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a9/
LA  - en
ID  - UFA_2017_9_3_a9
ER  - 
%0 Journal Article
%A O. A. Krivosheeva
%T Invariant subspaces with  zero density spectrum
%J Ufa mathematical journal
%D 2017
%P 100-108
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a9/
%G en
%F UFA_2017_9_3_a9
O. A. Krivosheeva. Invariant subspaces with  zero density spectrum. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 100-108. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a9/