@article{UFA_2017_9_3_a6,
author = {L. A. Kalyakin},
title = {Adiabatic approximation in a resonance capture problem},
journal = {Ufa mathematical journal},
pages = {61--75},
year = {2017},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a6/}
}
L. A. Kalyakin. Adiabatic approximation in a resonance capture problem. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 61-75. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a6/
[1] V. M. Babich, V. S. Buldyrev, “The art of asymptotics”, Vestn. Leningr. Univ. Mat. Mekh. Astron., 13:3 (1977), 5–12 (in Russian) | Zbl
[2] I. V. Andrianov, R. G. Barantsev, L. I. Manevich, Asymptotic mathematics and synergetics, URSS, M., 2004 (in Russian)
[3] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Trans. Math. Monog., 102, Amer. Math. Soc., Providence, 1992 | MR | MR | Zbl
[4] N. N. Bogolyubov, Yu. A. Mitropol'sky, Asymptotic methods in the theory of non-linear oscillations, Gordon and Breach, New York, 1961 | MR | MR | Zbl
[5] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Springer, Berlin, 1997 | MR | MR | Zbl
[6] J. Brüning, S. Yu. Dobrokhotov, M. A. Poteryakhin, “Averaging for Hamiltonian systems with one fast phase and small amplitudes”, Math. Notes, 70:5 (2001), 599–607 | DOI | DOI | MR | Zbl
[7] B. V. Chirikov, “The passage of a nonlinear oscillating system through resonance”, Sov. Phys. Dokl., 4 (1959), 390–394 | MR | Zbl
[8] L. A. Kalyakin, “Asymptotic behavior of solutions of equations of main resonance”, Theor. Math. Phys., 137:1 (2003), 1476–1484 | DOI | DOI | MR | Zbl
[9] L. A. Kalyakin, “Asymptotic analysis of autoresonance models”, Russ. Math. Surv., 63:5 (2008), 791–857 | DOI | DOI | MR | Zbl
[10] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 2, The classical theory of fields, Butterworth-Heinemann, Burlington, 1975 | MR | MR
[11] V. P. Milant'ev, “Cyclotron autoresonance — 50 years since its discovery”, Physics-Uspekhi, 56:8 (2013), 823–832 | DOI | DOI
[12] L. A. Kalyakin, “Asymptotic analysis of the model of cyclotron gyromagnetic autoresonance”, Vestnik ChelGU. Fiz., 2015, no. 21, 68–74 (in Russian)
[13] K.S. Golovanivsky, “Autoresonant Acceleration of Electrons at Nonlinear ECR in a Magnetic Field Which is Smoothly Growing in Time”, Physica Scripta, 22 (1980), 126–133 | DOI
[14] K. S. Golovanivsky, “The Gyromagnetic Autoresonance”, IEEE Transactions on plasma science, PS-1 1:1 (1983), 28–35 | DOI
[15] A. P. Itin, A. I. Neishtadt, A. A. Vasiliev, “Capture into resonance in dynamics of a charged partice in magnetic field and electrostatic wave”, Physica D, 141:4 (2000), 281–296 | DOI | MR | Zbl
[16] R. Haberman, E. K. Ho, “Boundary of the basin of attraction for weakly damped primery resonance”, J. Appl. Mech., 62:3 (1990), 941–946 | MR
[17] O.M. Kiselev, S. G. Glebov, “An asymptotic solution slowly crossing the separatrix near a saddle-centre bifurcation point”, Nonlinearity, 16 (2003), 327–362 | DOI | MR | Zbl
[18] A. I. Neishtadt, “Passage through a separatrix in a resonance problem with a slowly-varying parameter”, J. Appl. Math. Mech., 39:4 (1975), 594–605 | DOI | MR
[19] L.A. Kalyakin, “Asymptotic Analysis of an Autoresonance Model”, Russian Journal of Mathematical Physics, 9:1 (2002), 84–95 | MR | Zbl
[20] T. Armon, L. Friedland, “Chirped resonance dynamics in phase space”, J. Plasma Phys., 82 (2016), 705820501 | DOI
[21] T. Armon, L. Friedland, “Capture into resonance and phase-space dynamics in an optical centrifuge”, Phys. Rev. A, 93 (2016), 043406 | DOI
[22] L. A. Kalyakin, “Asymptotic analysis of the model of gyromagnetic autoresonance”, Comput. Math. Math. Phys., 57:2 (2017), 281–296 | DOI | MR | Zbl