Adiabatic approximation in a resonance capture problem
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 61-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By means of the averaging method, we analyze two model problems on capture into resonance that leads us to the adiabatic approximation in the leading term in the asymptotics. The main aim is an approximate (by using a small parameter) description of the domain of capture into resonance. This domain is in the phase plane and it is formed by the initial points for the resonance solutions with an unboundedly increasing energy. The capture domain depends on an additional parameter involved in the equation. We show that the adiabatic approximation fails as the capture domain becomes narrow. In this case we have to modify substantially the averaging method. As a result, a system of nonlinear differential equations arises for the leading term in the asymptotics and this system is not always integrable.
Keywords: nonlinear oscillations, small parameter, asymptotics, capture into a resonance, adiabatic approximation.
@article{UFA_2017_9_3_a6,
     author = {L. A. Kalyakin},
     title = {Adiabatic approximation in a resonance capture problem},
     journal = {Ufa mathematical journal},
     pages = {61--75},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a6/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Adiabatic approximation in a resonance capture problem
JO  - Ufa mathematical journal
PY  - 2017
SP  - 61
EP  - 75
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a6/
LA  - en
ID  - UFA_2017_9_3_a6
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Adiabatic approximation in a resonance capture problem
%J Ufa mathematical journal
%D 2017
%P 61-75
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a6/
%G en
%F UFA_2017_9_3_a6
L. A. Kalyakin. Adiabatic approximation in a resonance capture problem. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 61-75. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a6/

[1] V. M. Babich, V. S. Buldyrev, “The art of asymptotics”, Vestn. Leningr. Univ. Mat. Mekh. Astron., 13:3 (1977), 5–12 (in Russian) | Zbl

[2] I. V. Andrianov, R. G. Barantsev, L. I. Manevich, Asymptotic mathematics and synergetics, URSS, M., 2004 (in Russian)

[3] A. M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Trans. Math. Monog., 102, Amer. Math. Soc., Providence, 1992 | MR | MR | Zbl

[4] N. N. Bogolyubov, Yu. A. Mitropol'sky, Asymptotic methods in the theory of non-linear oscillations, Gordon and Breach, New York, 1961 | MR | MR | Zbl

[5] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Springer, Berlin, 1997 | MR | MR | Zbl

[6] J. Brüning, S. Yu. Dobrokhotov, M. A. Poteryakhin, “Averaging for Hamiltonian systems with one fast phase and small amplitudes”, Math. Notes, 70:5 (2001), 599–607 | DOI | DOI | MR | Zbl

[7] B. V. Chirikov, “The passage of a nonlinear oscillating system through resonance”, Sov. Phys. Dokl., 4 (1959), 390–394 | MR | Zbl

[8] L. A. Kalyakin, “Asymptotic behavior of solutions of equations of main resonance”, Theor. Math. Phys., 137:1 (2003), 1476–1484 | DOI | DOI | MR | Zbl

[9] L. A. Kalyakin, “Asymptotic analysis of autoresonance models”, Russ. Math. Surv., 63:5 (2008), 791–857 | DOI | DOI | MR | Zbl

[10] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 2, The classical theory of fields, Butterworth-Heinemann, Burlington, 1975 | MR | MR

[11] V. P. Milant'ev, “Cyclotron autoresonance — 50 years since its discovery”, Physics-Uspekhi, 56:8 (2013), 823–832 | DOI | DOI

[12] L. A. Kalyakin, “Asymptotic analysis of the model of cyclotron gyromagnetic autoresonance”, Vestnik ChelGU. Fiz., 2015, no. 21, 68–74 (in Russian)

[13] K.S. Golovanivsky, “Autoresonant Acceleration of Electrons at Nonlinear ECR in a Magnetic Field Which is Smoothly Growing in Time”, Physica Scripta, 22 (1980), 126–133 | DOI

[14] K. S. Golovanivsky, “The Gyromagnetic Autoresonance”, IEEE Transactions on plasma science, PS-1 1:1 (1983), 28–35 | DOI

[15] A. P. Itin, A. I. Neishtadt, A. A. Vasiliev, “Capture into resonance in dynamics of a charged partice in magnetic field and electrostatic wave”, Physica D, 141:4 (2000), 281–296 | DOI | MR | Zbl

[16] R. Haberman, E. K. Ho, “Boundary of the basin of attraction for weakly damped primery resonance”, J. Appl. Mech., 62:3 (1990), 941–946 | MR

[17] O.M. Kiselev, S. G. Glebov, “An asymptotic solution slowly crossing the separatrix near a saddle-centre bifurcation point”, Nonlinearity, 16 (2003), 327–362 | DOI | MR | Zbl

[18] A. I. Neishtadt, “Passage through a separatrix in a resonance problem with a slowly-varying parameter”, J. Appl. Math. Mech., 39:4 (1975), 594–605 | DOI | MR

[19] L.A. Kalyakin, “Asymptotic Analysis of an Autoresonance Model”, Russian Journal of Mathematical Physics, 9:1 (2002), 84–95 | MR | Zbl

[20] T. Armon, L. Friedland, “Chirped resonance dynamics in phase space”, J. Plasma Phys., 82 (2016), 705820501 | DOI

[21] T. Armon, L. Friedland, “Capture into resonance and phase-space dynamics in an optical centrifuge”, Phys. Rev. A, 93 (2016), 043406 | DOI

[22] L. A. Kalyakin, “Asymptotic analysis of the model of gyromagnetic autoresonance”, Comput. Math. Math. Phys., 57:2 (2017), 281–296 | DOI | MR | Zbl