Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 26-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we obtain two results on the behavior of Dirichlet series on a real axis. The first of them concerns the lower bound for the sum of the Dirichlet series on the system of segments $[\alpha,\,\alpha+\delta]$. Here the parameters $\alpha > 0$, $\delta > 0$ are such that $\alpha \uparrow + \infty$, $\delta \downarrow 0$. The needed asymptotic estimates is established by means of a method based on some inequalities for extremal functions in the appropriate non-quasi-analytic Carleman class. This approach turns out to be more effective than the known traditional ways for obtaining similar estimates. The second result specifies essentially the known theorem by M. A. Evgrafov on existence of a bounded on $\mathbb{R}$ Dirichlet series. According to Macintyre, the sum of this series tends to zero on $\mathbb{R}$. We prove a spectific estimate for the decay rate of the function in an Macintyre–Evgrafov type example.
Keywords: Dirichlet series, gap-power series, asymptotic behavior.
@article{UFA_2017_9_3_a3,
     author = {A. M. Gaisin and G. A. Gaisina},
     title = {Estimate for growth and decay of functions in {Macintyre{\textendash}Evgrafov} kind theorems},
     journal = {Ufa mathematical journal},
     pages = {26--36},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - G. A. Gaisina
TI  - Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems
JO  - Ufa mathematical journal
PY  - 2017
SP  - 26
EP  - 36
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/
LA  - en
ID  - UFA_2017_9_3_a3
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A G. A. Gaisina
%T Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems
%J Ufa mathematical journal
%D 2017
%P 26-36
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/
%G en
%F UFA_2017_9_3_a3
A. M. Gaisin; G. A. Gaisina. Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 26-36. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/

[1] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640 | DOI | MR

[2] M. N. Sheremeta, “A property of entire functions with real taylor coefficients”, Math. Notes, 18:3 (1975), 823–827 | DOI | MR | MR | Zbl

[3] M. M. Sheremeta, M. V. Zabolotskii, “Some open problems in theory of functions of a complex variable”, Matem. Studii, 3 (1994), 117–119 (Problem section) | MR

[4] M.M. Sheremeta, “Five open problems in the theory of entire functions”, Matem. Studii, 6 (1996), 157–159 (Problem section)

[5] A. M. Gaisin, “Solution of the Polya problem”, Sb. Math., 193:6 (2002), 825–845 | DOI | DOI | MR | Zbl

[6] A. M. Gaisin, “Estimates of the growth and decrease on curves of an entire function of infinite order”, Sb. Math., 194:8 (2003), 1167–1194 | DOI | DOI | MR

[7] A. M. Gaisin, “On a theorem of Hayman”, Siber. Math. J., 39:3 (1998), 431–445 | DOI | MR

[8] A. M. Gaisin, Zh. G. Rakhmatullina, “An estimate for the sum of a Dirichlet series in terms of the minimum of its modulus on a vertical line segment”, Sb. Math., 202:12 (2011), 1741–1773 | DOI | DOI | MR | Zbl

[9] M. A. Evgrafov, “On a uniqueness theorem for Dirichlet series”, Uspekhi Matem. Nauk, 17:3 (1962), 169–175 (in Russian) | MR | Zbl

[10] A.J. Macintyre, “Asymptotic paths of integral functions with gap power series”, Proc. London Math. Soc., 2:3 (1952), 286–296 | DOI | MR | Zbl

[11] N. N. Yusupova, Asymptotics of the Dirichlet series of prescribed growth, PhD thesis, Inst. Math., Ufa, 2009

[12] A. M. Gaisin, “Properties of series of exponentials whose exponents satisfy to a condition of Levinson type”, Sborn. Math., 197:6 (2006), 813–833 | DOI | Zbl

[13] A. M. Gaisin, “Levinson's condition in the theory of entire functions: equivalent statements”, Math. Notes, 83:3 (2008), 317–326 | DOI | MR | Zbl

[14] A. F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR

[15] A. M. Gaisin, “Dirichlet series with real coefficients that are unbounded on the positive half-axis”, Sb. Math., 198:6 (2007), 793–815 | DOI | DOI | MR | Zbl

[16] A. M. Gaisin, Borel–Nevalinna type theorems. Applications, Editing Publishing Center, Bashkir State Univ., Ufa, 2010 (in Russian)

[17] A. M. Gaisin, “Strong incompleteness of a system of exponentials, and Macintyre's problem”, Math. USSR-Sb., 73:2 (1992), 305–318 | Zbl

[18] A. M. Gaisin, “An estimate for a Dirichlet series whose exponents are zeros of an entire function with irregular behavior”, Russ. Acad. Sci. Sb. Math., 81:1 (1995), 163–183 | Zbl

[19] I. I. Hirschman, D. V. Widder, The convolution transform, Princeton Univ. Press, Princeton, 1955 | MR | Zbl

[20] A. F. Leont'ev, Sequences of exponential polynomials, Nauka, M., 1980 (in Russian) | MR