Estimate for growth and decay of functions in Macintyre--Evgrafov kind theorems
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 26-36
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we obtain two results on the behavior of Dirichlet series on a real axis.
The first of them concerns the lower bound for the sum of the Dirichlet series on the system of segments $[\alpha,\,\alpha+\delta]$. Here the parameters $\alpha > 0$, $\delta > 0$ are such that $\alpha \uparrow + \infty$, $\delta \downarrow 0$. The needed asymptotic estimates is established by means of a method based on some inequalities for extremal functions in the appropriate non-quasi-analytic Carleman class. This approach turns out to be more effective than the known traditional ways for obtaining similar estimates.
The second result specifies essentially the known theorem by M. A. Evgrafov on existence of a bounded on $\mathbb{R}$ Dirichlet series. According to Macintyre, the sum of this series tends to zero on $\mathbb{R}$. We prove a spectific estimate for the decay rate of the function in an Macintyre–Evgrafov type example.
Keywords:
Dirichlet series, gap-power series, asymptotic behavior.
@article{UFA_2017_9_3_a3,
author = {A. M. Gaisin and G. A. Gaisina},
title = {Estimate for growth and decay of functions in {Macintyre--Evgrafov} kind theorems},
journal = {Ufa mathematical journal},
pages = {26--36},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/}
}
TY - JOUR AU - A. M. Gaisin AU - G. A. Gaisina TI - Estimate for growth and decay of functions in Macintyre--Evgrafov kind theorems JO - Ufa mathematical journal PY - 2017 SP - 26 EP - 36 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/ LA - en ID - UFA_2017_9_3_a3 ER -
A. M. Gaisin; G. A. Gaisina. Estimate for growth and decay of functions in Macintyre--Evgrafov kind theorems. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 26-36. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/