@article{UFA_2017_9_3_a3,
author = {A. M. Gaisin and G. A. Gaisina},
title = {Estimate for growth and decay of functions in {Macintyre{\textendash}Evgrafov} kind theorems},
journal = {Ufa mathematical journal},
pages = {26--36},
year = {2017},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/}
}
A. M. Gaisin; G. A. Gaisina. Estimate for growth and decay of functions in Macintyre–Evgrafov kind theorems. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 26-36. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a3/
[1] G. Pólya, “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Math. Z., 29:1 (1929), 549–640 | DOI | MR
[2] M. N. Sheremeta, “A property of entire functions with real taylor coefficients”, Math. Notes, 18:3 (1975), 823–827 | DOI | MR | MR | Zbl
[3] M. M. Sheremeta, M. V. Zabolotskii, “Some open problems in theory of functions of a complex variable”, Matem. Studii, 3 (1994), 117–119 (Problem section) | MR
[4] M.M. Sheremeta, “Five open problems in the theory of entire functions”, Matem. Studii, 6 (1996), 157–159 (Problem section)
[5] A. M. Gaisin, “Solution of the Polya problem”, Sb. Math., 193:6 (2002), 825–845 | DOI | DOI | MR | Zbl
[6] A. M. Gaisin, “Estimates of the growth and decrease on curves of an entire function of infinite order”, Sb. Math., 194:8 (2003), 1167–1194 | DOI | DOI | MR
[7] A. M. Gaisin, “On a theorem of Hayman”, Siber. Math. J., 39:3 (1998), 431–445 | DOI | MR
[8] A. M. Gaisin, Zh. G. Rakhmatullina, “An estimate for the sum of a Dirichlet series in terms of the minimum of its modulus on a vertical line segment”, Sb. Math., 202:12 (2011), 1741–1773 | DOI | DOI | MR | Zbl
[9] M. A. Evgrafov, “On a uniqueness theorem for Dirichlet series”, Uspekhi Matem. Nauk, 17:3 (1962), 169–175 (in Russian) | MR | Zbl
[10] A.J. Macintyre, “Asymptotic paths of integral functions with gap power series”, Proc. London Math. Soc., 2:3 (1952), 286–296 | DOI | MR | Zbl
[11] N. N. Yusupova, Asymptotics of the Dirichlet series of prescribed growth, PhD thesis, Inst. Math., Ufa, 2009
[12] A. M. Gaisin, “Properties of series of exponentials whose exponents satisfy to a condition of Levinson type”, Sborn. Math., 197:6 (2006), 813–833 | DOI | Zbl
[13] A. M. Gaisin, “Levinson's condition in the theory of entire functions: equivalent statements”, Math. Notes, 83:3 (2008), 317–326 | DOI | MR | Zbl
[14] A. F. Leontiev, Exponential series, Nauka, M., 1976 (in Russian) | MR
[15] A. M. Gaisin, “Dirichlet series with real coefficients that are unbounded on the positive half-axis”, Sb. Math., 198:6 (2007), 793–815 | DOI | DOI | MR | Zbl
[16] A. M. Gaisin, Borel–Nevalinna type theorems. Applications, Editing Publishing Center, Bashkir State Univ., Ufa, 2010 (in Russian)
[17] A. M. Gaisin, “Strong incompleteness of a system of exponentials, and Macintyre's problem”, Math. USSR-Sb., 73:2 (1992), 305–318 | Zbl
[18] A. M. Gaisin, “An estimate for a Dirichlet series whose exponents are zeros of an entire function with irregular behavior”, Russ. Acad. Sci. Sb. Math., 81:1 (1995), 163–183 | Zbl
[19] I. I. Hirschman, D. V. Widder, The convolution transform, Princeton Univ. Press, Princeton, 1955 | MR | Zbl
[20] A. F. Leont'ev, Sequences of exponential polynomials, Nauka, M., 1980 (in Russian) | MR