Levi-flat world: a survey of local theory
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 172-185

Voir la notice de l'article provenant de la source Math-Net.Ru

This expository paper concerns local properties of Levi-flat real analytic manifolds with singularities. Levi-flat manifolds arise naturally in Complex Geometry and Foliation Theory. In many cases (global) compact Levi-flat manifolds without singularities do not exist. These global obstructions make natural the study of Levi-flat objects with singularities because they always exist. The present expository paper deals with some recent results on local geometry of Levi-flat singularities. One of the main questions concerns an extension of the Levi foliation as a holomorphic foliation to a full neighborhood of singularity. It turns out that in general such extension does not exist. Nevertheless, the Levi foliation always extends as a holomorphic web (a foliation with branching) near a non-dicritical singularity. We also present an efficient criterion characterizing these singularities.
Keywords: Levi-flat manifold.
Mots-clés : CR structure
@article{UFA_2017_9_3_a17,
     author = {A. Sukhov},
     title = {Levi-flat world: a survey of local theory},
     journal = {Ufa mathematical journal},
     pages = {172--185},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/}
}
TY  - JOUR
AU  - A. Sukhov
TI  - Levi-flat world: a survey of local theory
JO  - Ufa mathematical journal
PY  - 2017
SP  - 172
EP  - 185
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/
LA  - en
ID  - UFA_2017_9_3_a17
ER  - 
%0 Journal Article
%A A. Sukhov
%T Levi-flat world: a survey of local theory
%J Ufa mathematical journal
%D 2017
%P 172-185
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/
%G en
%F UFA_2017_9_3_a17
A. Sukhov. Levi-flat world: a survey of local theory. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 172-185. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/