Levi-flat world: a survey of local theory
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 172-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This expository paper concerns local properties of Levi-flat real analytic manifolds with singularities. Levi-flat manifolds arise naturally in Complex Geometry and Foliation Theory. In many cases (global) compact Levi-flat manifolds without singularities do not exist. These global obstructions make natural the study of Levi-flat objects with singularities because they always exist. The present expository paper deals with some recent results on local geometry of Levi-flat singularities. One of the main questions concerns an extension of the Levi foliation as a holomorphic foliation to a full neighborhood of singularity. It turns out that in general such extension does not exist. Nevertheless, the Levi foliation always extends as a holomorphic web (a foliation with branching) near a non-dicritical singularity. We also present an efficient criterion characterizing these singularities.
Keywords: Levi-flat manifold.
Mots-clés : CR structure
@article{UFA_2017_9_3_a17,
     author = {A. Sukhov},
     title = {Levi-flat world: a survey of local theory},
     journal = {Ufa mathematical journal},
     pages = {172--185},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/}
}
TY  - JOUR
AU  - A. Sukhov
TI  - Levi-flat world: a survey of local theory
JO  - Ufa mathematical journal
PY  - 2017
SP  - 172
EP  - 185
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/
LA  - en
ID  - UFA_2017_9_3_a17
ER  - 
%0 Journal Article
%A A. Sukhov
%T Levi-flat world: a survey of local theory
%J Ufa mathematical journal
%D 2017
%P 172-185
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/
%G en
%F UFA_2017_9_3_a17
A. Sukhov. Levi-flat world: a survey of local theory. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 172-185. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a17/

[1] Bedford E., “Holomorphic continuation of smooth functions over Levi-flat hypersurfaces”, Trans. Amer. Math. Soc., 232 (1977), 323–341 | DOI | MR | Zbl

[2] Brunella M., “Singular Levi-flat hypersurfaces and codimension one foliations”, Ann. Sc. Norm. super. Pisa, VI (2007), 661–672 | MR | Zbl

[3] Brunella M., “Some remarks on meromorphic first integrals”, Enseign. Math., 58 (2012), 315–324 | DOI | MR | Zbl

[4] Burns D., Gong X., “Singular Levi-flat real analytic hypersurfaces”, Am. J. Math., 121 (1999), 23–53 | DOI | MR | Zbl

[5] Cerveau D., Lins Neto A., “Local Levi-flat hypersurfaces invariants by a codimension one foliation”, Am. J. Math., 133 (2011), 677–716 | DOI | MR | Zbl

[6] Cerveau D., Sad P., “Fonctions et feuilletages Levi-flat. Etude locale”, Ann. Sc. Norm. super. Pisa, III (2004), 427–445 | MR | Zbl

[7] Chirka E., Complex analytic sets, Kluwer, 1989 | MR | Zbl

[8] Diederich K., Pinchuk S., “The geometric reflection principle in several complex variables: a survey”, Compl. Var. and Ellipt. Equat., 54 (2009), 223–241 | DOI | MR | Zbl

[9] Fernarndez-Perez A., “On Levi-flat hypersurfaces with generic real singular set”, J. Geom. Anal., 23 (2013), 2020–2033 | DOI | MR

[10] Fernández-Pérez A., Lebl J., Global and local aspects of Levi-flat hypersurfaces, Publ. Mat., IMPA, Rio de Janeiro, 2015, x+65 pp. | MR | Zbl

[11] Lebl J., “Singular set of a Levi-flat hypersurface is Levi-flat”, Math. Ann., 355 (2013), 1177–1199 | DOI | MR | Zbl

[12] Łojasiewicz S., Introduction to Complex Analytic Geometry, Birkhäuser, 1991 | MR

[13] Łojasiewicz S., “On semi-analytic and subanalytic geometry”, Panorama Math., Banach Center Publ., 34, 1995, 89–104 | DOI | MR

[14] Narasimhan R., Introduction to the theory of analytic spaces, Lecture Notes (New York), 25, Springer-Verlag, New York, 1966 | MR | Zbl

[15] Pereira J., Pirio L., An invitation to web geometry, IMPA, 2009 | MR | Zbl

[16] Pinchuk S., Shafikov R., Sukhov A., Dicritical singularities and laminar currents on Levi-flat hypersurfaces, Izv. Math., 2016 (to appear) , arXiv: 1606.02140v1 [math.CV] | MR

[17] Pinchuk S., Shafikov R., Sukhov A., Segre envelopes of singular Levi-flat sets, 2016, arXiv: 1606.09294v2 [math. CV]

[18] Shafikov R., Sukhov A., “Germs of singular Levi-flat hypersurfaces and holomorphic foliations”, Comment. Math. Helv., 90 (2015), 479–502 | DOI | MR | Zbl