@article{UFA_2017_9_3_a16,
author = {F. Haslinger},
title = {Pauli operators and the $\overline\partial${-Neumann} problem},
journal = {Ufa mathematical journal},
pages = {165--171},
year = {2017},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a16/}
}
F. Haslinger. Pauli operators and the $\overline\partial$-Neumann problem. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 165-171. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a16/
[1] F. Berger, F. Haslinger, “On some spectral properties of the weighted $\overline{\partial}$-Neumann operator”, J. Math. Kyoto Univ. (to appear)
[2] M. Christ, “On the $\overline{\partial} $ equation in weighted $L^2$ norms in $\mathbb{C}^1$”, J. Geom. Anal., 1:3 (1991), 193–230 | DOI | MR | Zbl
[3] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger operators with applications to quantum mechanics and global geometry, Springer, Berlin, 1987 | MR
[4] E. B. Davies, Spectral theory and differential operators, Cambridge studies in advanced mathematics, 42, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[5] F. Haslinger, The $\overline{\partial}$-Neumann problem and Schrödinger operators, de Gruyter Expositions in Mathematics, 59, Walter De Gruyter, Berlin, 2014 | MR
[6] F. Haslinger, B. Helffer, “Compactness of the solution operator to $\overline{\partial} $ in weighted $L^ 2$-spaces”, J. Funct. Anal., 243:2 (2007), 679–697 | DOI | MR | Zbl
[7] G. Rozenblum, N. Shirokov, “Infiniteness of zero modes for the Pauli operator with singular magnetic field”, J. Func. Anal., 233:1 (2006), 135–172 | DOI | MR | Zbl
[8] I. Shigekawa, “Spectral properties of Schrödinger operators with magnetic fields for a spin $ 1/2 $ particle”, J. Funct. Anal., 101:2 (1991), 255–285 | DOI | MR | Zbl
[9] E. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, 1993 | MR | Zbl
[10] B. Thaller, The Dirac Equation, Springer, Berlin, 1991 | MR | Zbl