On integrability of a discrete analogue of Kaup–Kupershmidt equation
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 158-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a new example of the equation obtained as a result of a recent generalized symmetry classification of differential-difference equations defined on five points of an one-dimensional lattice. We establish that in the continuous limit this new equation turns into the well-known Kaup–Kupershmidt equation. We also prove its integrability by constructing an $L-A$ pair and conservation laws. Moreover, we present a possibly new scheme for constructing conservation laws from $L-A$ pairs. We show that this new differential-difference equation is similar by its properties to the discrete Sawada–Kotera equation studied earlier. Their continuous limits, namely the Kaup–Kupershmidt and Sawada–Kotera equations, play the main role in the classification of fifth order evolutionary equations made by V. G. Drinfel'd, S. I. Svinolupov and V. V. Sokolov.
Keywords: differential-difference equation, integrability, conservation law.
Mots-clés : Lax pair
@article{UFA_2017_9_3_a15,
     author = {R. N. Garifullin and R. I. Yamilov},
     title = {On integrability of a discrete analogue of {Kaup{\textendash}Kupershmidt} equation},
     journal = {Ufa mathematical journal},
     pages = {158--164},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a15/}
}
TY  - JOUR
AU  - R. N. Garifullin
AU  - R. I. Yamilov
TI  - On integrability of a discrete analogue of Kaup–Kupershmidt equation
JO  - Ufa mathematical journal
PY  - 2017
SP  - 158
EP  - 164
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a15/
LA  - en
ID  - UFA_2017_9_3_a15
ER  - 
%0 Journal Article
%A R. N. Garifullin
%A R. I. Yamilov
%T On integrability of a discrete analogue of Kaup–Kupershmidt equation
%J Ufa mathematical journal
%D 2017
%P 158-164
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a15/
%G en
%F UFA_2017_9_3_a15
R. N. Garifullin; R. I. Yamilov. On integrability of a discrete analogue of Kaup–Kupershmidt equation. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 158-164. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a15/

[1] V.E. Adler, On a discrete analog of the Tzitzeica equation, arXiv: 1103.5139 [nlin.SI]

[2] V. E. Adler, “Integrable Möbius invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | MR

[3] V. G. Drinfel'd, S. I. Svinolupov, V. V. Sokolov, “Classification of fifth order evolution equations possessing infinite series of conservation laws”, Dokl. AN Ukr. SSR. Ser. A, 10 (1985), 8–10 (in Urkainin) | MR | Zbl

[4] A.P. Fordy, J. Gibbons, “Factorization of operators I. Miura transformations”, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI | MR | Zbl

[5] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theor. Math. Phys., 180:1 (2014), 765–780 | DOI | MR | Zbl

[6] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205 | DOI | MR | Zbl

[7] R. N. Garifullin, R. I. Yamilov, D. Levi, “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01 | DOI | MR | Zbl

[8] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201 | DOI | MR | Zbl

[9] Theor. Math. Phys., 177:3 (2013), 1655–1679 | DOI | DOI | MR | Zbl

[10] D.J. Kaup., “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_x+6R\psi=\lambda\psi$”, Stud. Appl. Math., 62:3 (1980), 189–216 | DOI | MR | Zbl

[11] Ufa Math. Journal, 4:3 (2012), 104–152 | MR | Zbl

[12] A. V. Mikhailov, “Formal diagonalisation of Lax-Darboux schemes”, Model. Anal. Inform. Sist., 22:6 (2015), 795–817 | DOI | MR

[13] Russ. Math. Surv., 42:4 (1987), 1–63 | DOI | MR

[14] A. V. Mikhailov, V. V. Sokolov, A. B. Shabat, “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer series in Nonlinear Dynamics, ed. V. E. Zakharov, 1991, 115–184 | DOI | MR | Zbl

[15] A. V. Mikhailov, P. Xenitidis, “Second order integrability conditions for difference equations: an integrable equation”, Lett. Math. Phys., 104:4 (2014), 431–450 | DOI | MR | Zbl

[16] K. Sawada, T. Kotera, “A method for finding {$N$}-soliton solutions of the {K}.d.{V}. equation and {K}.d.{V}.-like equation”, Progr. Theoret. Phys., 51:5 (1974), 1355–1367 | DOI | MR | Zbl

[17] S. Tsujimoto, R. Hirota, “Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form”, J. Phys. Soc. Jpn., 65 (1996), 2797–2806 | DOI | MR | Zbl

[18] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl