Mots-clés : Lax pair
@article{UFA_2017_9_3_a15,
author = {R. N. Garifullin and R. I. Yamilov},
title = {On integrability of a discrete analogue of {Kaup{\textendash}Kupershmidt} equation},
journal = {Ufa mathematical journal},
pages = {158--164},
year = {2017},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a15/}
}
R. N. Garifullin; R. I. Yamilov. On integrability of a discrete analogue of Kaup–Kupershmidt equation. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 158-164. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a15/
[1] V.E. Adler, On a discrete analog of the Tzitzeica equation, arXiv: 1103.5139 [nlin.SI]
[2] V. E. Adler, “Integrable Möbius invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50:4 (2016), 268–280 | DOI | MR
[3] V. G. Drinfel'd, S. I. Svinolupov, V. V. Sokolov, “Classification of fifth order evolution equations possessing infinite series of conservation laws”, Dokl. AN Ukr. SSR. Ser. A, 10 (1985), 8–10 (in Urkainin) | MR | Zbl
[4] A.P. Fordy, J. Gibbons, “Factorization of operators I. Miura transformations”, J. Math. Phys., 21:10 (1980), 2508–2510 | DOI | MR | Zbl
[5] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theor. Math. Phys., 180:1 (2014), 765–780 | DOI | MR | Zbl
[6] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205 | DOI | MR | Zbl
[7] R. N. Garifullin, R. I. Yamilov, D. Levi, “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01 | DOI | MR | Zbl
[8] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201 | DOI | MR | Zbl
[9] Theor. Math. Phys., 177:3 (2013), 1655–1679 | DOI | DOI | MR | Zbl
[10] D.J. Kaup., “On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_x+6R\psi=\lambda\psi$”, Stud. Appl. Math., 62:3 (1980), 189–216 | DOI | MR | Zbl
[11] Ufa Math. Journal, 4:3 (2012), 104–152 | MR | Zbl
[12] A. V. Mikhailov, “Formal diagonalisation of Lax-Darboux schemes”, Model. Anal. Inform. Sist., 22:6 (2015), 795–817 | DOI | MR
[13] Russ. Math. Surv., 42:4 (1987), 1–63 | DOI | MR
[14] A. V. Mikhailov, V. V. Sokolov, A. B. Shabat, “The symmetry approach to classification of integrable equations”, What is Integrability?, Springer series in Nonlinear Dynamics, ed. V. E. Zakharov, 1991, 115–184 | DOI | MR | Zbl
[15] A. V. Mikhailov, P. Xenitidis, “Second order integrability conditions for difference equations: an integrable equation”, Lett. Math. Phys., 104:4 (2014), 431–450 | DOI | MR | Zbl
[16] K. Sawada, T. Kotera, “A method for finding {$N$}-soliton solutions of the {K}.d.{V}. equation and {K}.d.{V}.-like equation”, Progr. Theoret. Phys., 51:5 (1974), 1355–1367 | DOI | MR | Zbl
[17] S. Tsujimoto, R. Hirota, “Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form”, J. Phys. Soc. Jpn., 65 (1996), 2797–2806 | DOI | MR | Zbl
[18] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl