Analytic functions with smooth absolute value of boundary data
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 148-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ be an analytic function in the unit circle $D$ continuous up to its boundary $\Gamma$, $f(z) \neq 0$, $z \in D$. Assume that on $\Gamma$, the function $|f|$ has a modulus of continuity $\omega(|f|,\delta)$. In the paper we establish the estimate $\omega(f,\delta) \leq A\omega(|f|, \sqrt{\delta})$, where $A$ is a some non-negative number, and we prove that this estimate is sharp. Moreover, in the paper we establish a multi-dimensional analogue of the mentioned result. In the proof of the main theorem, an essential role is played by a theorem of Hardy–Littlewood type on Hölder classes of the functions analytic in the unit circle.
Keywords: analytic function, modulus of continuity, factorization, outer function.
@article{UFA_2017_9_3_a14,
     author = {F. A. Shamoyan},
     title = {Analytic functions with smooth absolute value of boundary data},
     journal = {Ufa mathematical journal},
     pages = {148--157},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - Analytic functions with smooth absolute value of boundary data
JO  - Ufa mathematical journal
PY  - 2017
SP  - 148
EP  - 157
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/
LA  - en
ID  - UFA_2017_9_3_a14
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T Analytic functions with smooth absolute value of boundary data
%J Ufa mathematical journal
%D 2017
%P 148-157
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/
%G en
%F UFA_2017_9_3_a14
F. A. Shamoyan. Analytic functions with smooth absolute value of boundary data. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 148-157. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/