Analytic functions with smooth absolute value of boundary data
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 148-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f$ be an analytic function in the unit circle $D$ continuous up to its boundary $\Gamma$, $f(z) \neq 0$, $z \in D$. Assume that on $\Gamma$, the function $|f|$ has a modulus of continuity $\omega(|f|,\delta)$. In the paper we establish the estimate $\omega(f,\delta) \leq A\omega(|f|, \sqrt{\delta})$, where $A$ is a some non-negative number, and we prove that this estimate is sharp. Moreover, in the paper we establish a multi-dimensional analogue of the mentioned result. In the proof of the main theorem, an essential role is played by a theorem of Hardy–Littlewood type on Hölder classes of the functions analytic in the unit circle.
Keywords: analytic function, modulus of continuity, factorization, outer function.
@article{UFA_2017_9_3_a14,
     author = {F. A. Shamoyan},
     title = {Analytic functions with smooth absolute value of boundary data},
     journal = {Ufa mathematical journal},
     pages = {148--157},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - Analytic functions with smooth absolute value of boundary data
JO  - Ufa mathematical journal
PY  - 2017
SP  - 148
EP  - 157
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/
LA  - en
ID  - UFA_2017_9_3_a14
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T Analytic functions with smooth absolute value of boundary data
%J Ufa mathematical journal
%D 2017
%P 148-157
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/
%G en
%F UFA_2017_9_3_a14
F. A. Shamoyan. Analytic functions with smooth absolute value of boundary data. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 148-157. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a14/

[1] N. K. Bari, S. B. Stechkin, “Best approximations and differential properties of two conjugate functions”, Trudy Mosk. Matem. Obsch., 5, 1956, 482–522 (in Russian)

[2] A. V. Vasin, S. V. Kislyakov, A. N. Medvedev, “Local smoothness of an analytic function compared to the smoothness of its modulus”, St. Petersburg Math. J., 25:3 (2013), 397–420 | DOI | MR

[3] Ya. L. Geronimus, “On some properties of analytic functions continuous on a closed circle or circular sector”, Matem. Sborn., 38(80):3 (1956), 319–330 (in Russian) | Zbl

[4] N. P. Kornejchuk, Extremal problems of approximation theory, Nauka, M., 1976 (in Russian) | MR

[5] V. P. Havin, F. A. Shamoyan, “Analytic functions with the boundary values having Lipschitz module”, Zapis. Nauchn. Semin. LOMI, 19, 1970, 237–239 (in Russian) ; 265–287 | Zbl | Zbl

[6] V. P. Khavin, “A genralization of the Privalov–Zygmund theorem on the modulus of continuity of the conjugate function”, Izv. Akad. Nauk Arm. SSSR. Ser. Matem., 6 (1971), 252–258 ; 265–287 | MR | Zbl

[7] F. A. Shamoyan, Some division problems in spaces of analytic functions, PhD thesis, Leningrad State Univ., L., 1970 (in Russian) | Zbl

[8] N. A. Shirokov, “Outer functions from the analytic O. V. Besov classes”, J. Math. Sci., 85:2 (1997), 1867–1897 | DOI | MR

[9] N. A. Shirokov, “Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere”, Zapis. Nauch. Semin. POMI, 447, 2016, 123–127 (in Russian)

[10] N. A. Shirokov, Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312, Springer-Verlag, Berlin, 1988, 210 pp. | DOI | MR | Zbl

[11] Kehe Zhu, Space of holomorphic functions in unit ball, Cerad. Texts in math., 226, Springer-Verlag, Berlin, 2004, 271 pp. | MR