On applications of Faà-di-Bruno formula
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 131-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we construct two modifications of the classical Faà-di-Bruno formula. We consider the applications of these formulae in the integrability theory for nonlinear partial differential equations. We discuss the problem on integration by parts in the Gelfand–Olver–Sanders formal variational calculus.
Keywords: differential polynomials, integrability conditions.
Mots-clés : Faà-di-Bruno formula
@article{UFA_2017_9_3_a12,
     author = {A. B. Shabat and M. Kh. Efendiev},
     title = {On applications of {Fa\`a-di-Bruno} formula},
     journal = {Ufa mathematical journal},
     pages = {131--136},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a12/}
}
TY  - JOUR
AU  - A. B. Shabat
AU  - M. Kh. Efendiev
TI  - On applications of Faà-di-Bruno formula
JO  - Ufa mathematical journal
PY  - 2017
SP  - 131
EP  - 136
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a12/
LA  - en
ID  - UFA_2017_9_3_a12
ER  - 
%0 Journal Article
%A A. B. Shabat
%A M. Kh. Efendiev
%T On applications of Faà-di-Bruno formula
%J Ufa mathematical journal
%D 2017
%P 131-136
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a12/
%G en
%F UFA_2017_9_3_a12
A. B. Shabat; M. Kh. Efendiev. On applications of Faà-di-Bruno formula. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 131-136. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a12/

[1] L. Comtet, Advanced Combinatorics, Reidel Publishing Company, Dordrecht, 1974 | MR | Zbl

[2] Faà di Bruno, “Note sur un nouvelle formulae de calcul differentiel”, Quart. J.M., 1 (1857), 359–360

[3] Rumen Mishkov, “Generalization of the formula of Faà di Bruno for a composite function with vector argument”, Internat. J. Math., 24:7 (2000), 481–491 | DOI | MR | Zbl

[4] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Characteristic Lie rings and nonlinear integrable equations, Institute of Computer Stuides, M., 2012 (in Russian)

[5] J. Sanders, J. P. Wang, “On the integrability of homogeneous scalar evolution equations”, Journal of Diff. Eq-s, 147 (1998), 410–434 | DOI | MR | Zbl

[6] A. P. Veselov, A. B. Shabat, “Dressing chains and spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27:2 (1993), 81–96 | DOI | MR | Zbl

[7] A. B. Shabat, V. V. Sokolov, “Classification of integrable evolution equations”, Soviet Scientific Reviews, Section C, 4 (1984), 221–280 | MR | Zbl

[8] A. V. Zhiber, A. B. Shabat, “Klein–Gordon equations with a nontrivial group”, Sov. Phys. Dokl., 24:8 (1979), 607–609

[9] A. Shabat, R. Yamilov, Exponential systems of type I and Cartan matrices, Preprint, Ufa, 1981, 22 pp. (in Russian)

[10] A.N. Leznov, “On the complete integrability of a nonlinear system of partial differential equations in two-dimensional space”, Theor. Math. Phys., 42:3 (1980), 225–229 | DOI | MR | MR | Zbl | Zbl

[11] N. Kh. Ibragimov, A. B. Shabat, “Infinite Lie–Beklund algebras”, Funct. Anal. Appl., 14:4 (1980), 313–315 | DOI | MR | Zbl