@article{UFA_2017_9_3_a11,
author = {V. Yu. Novokshenov},
title = {Discrete integrable equations and special functions},
journal = {Ufa mathematical journal},
pages = {118--130},
year = {2017},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a11/}
}
V. Yu. Novokshenov. Discrete integrable equations and special functions. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 118-130. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a11/
[1] M. J. Ablowitz, P. A. Clarkson, “Solitons, Nonlinear Evolution Equations and Inverse Scattering”, Math. Soc. Lecture Notes Series, 149, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[2] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 1–54 | DOI | MR
[3] A. Borodin, “Isomonodromy transformations of linear systems of difference equations”, Ann. Math., 160:3 (2004), 1141–1182 | DOI | MR
[4] K. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhauser Verlag, Basel, 1981 | MR | Zbl
[5] P. Deift, Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, Courant Lecture Notes, New York Univ., NY, 1999 | MR
[6] P. A. Deift, “Integrable Systems and Combinatorial Theory”, Notices of the Amer. Math. Soc., 47:6 (2000), 631–640 | MR | Zbl
[7] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954 | MR
[8] A. S. Fokas, A. R. Its, A. V. Kitaev, “The Isomonodromy Approach to Matrix Models in 2D Quantum Gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl
[9] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann-Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[10] W. Fulton, Young tableaux: with applications to representation theory and geometry, London Math. Soc. Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[11] F. D. Gakhov, Boundary value problems, Dover Publications, 1990 | MR | Zbl
[12] I.M. Gessel, “Symmetric functions and Precursiveness”, J. Combin. Theory, Ser. A, 53 (1990), 257–285 | DOI | MR | Zbl
[13] B. Grammaticos, F. W. Nijhof, A. Ramani, “Discrete Painlevé equations, The Painlevé property”, CRM Ser. Math. Phys., Springer, New York, 1999, 413–516 | MR | Zbl
[14] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR
[15] A. R. Its, “The Riemann–Hilbert Problem and Integrable Systems”, Notices of the Amer. Math. Soc., 50:11 (2003), 1389–1400 | MR | Zbl
[16] A. V. Kitaev, “Special functions of the isomonodromy type”, Acta Appl. Math., 64 (2000), 1–32 | DOI | MR | Zbl
[17] A. P. Magnus, “Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237 | DOI | MR | Zbl
[18] V. Yu. Novokshenov, “The Riemann-Hilbert Problem and Special Functions”, Geometric Methods in Physics, AIP Conf. Proc., 208, 2008, 149–161 | DOI | MR
[19] V. Yu. Novokshenov, A. A. Schelkonogov, “Distribution of zeroes to generalized Hermite polynomials”, Ufimskij Matem. Zhurn., 7:3 (2015), 57–69
[20] Y. Ohta, A. Ramani, B. Grammaticos, K. M. Tamizhmani, “From discrete to continuous Painlevé equations: a bilinear approach”, Phys. Lett. A, 216:6 (1996), 255–261 | DOI | MR
[21] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite”, Commentarii Math. Helvetici, 1 (1929), 227–254 | DOI | MR | Zbl
[22] A. B. Shabat, “The infinite-dimensional dressing dynamical system”, Inverse Problems, 8:2 (1992), 303–308 | DOI | MR | Zbl
[23] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Comm. Math. Phys., 207:3 (1999), 665–685 | DOI | MR | Zbl
[24] H. Sakai, “Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl
[25] G. Szegö, Orthogonal polynomials, Colloquium Publ., 23, Amer. Math. Soc., New York, 1959 | MR | Zbl
[26] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contem. Soviet Math. Plenum Publishing Corp., New York, 1984 | MR | MR | Zbl
[27] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1996 | MR | Zbl