Discrete integrable equations and special functions
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 118-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generic scheme based on the matrix Riemann–Hilbert problem theory is proposed for constructing classical special functions satisfying difference equations. These functions comprise gamma- and zeta functions, as well as orthogonal polynomials with corresponding recurrence relations. We show that all difference equations are the compatibility conditions of certain Lax pair coming from the Riemann–Hilbert problem. At that, the integral representations for solutions to the classical Riemann–Hilbert problem on duality of analytic functions on a contour in the complex plane are generalized for the case of discrete measures, that is, for infinite sequences of points in the complex plane. We establish that such generalization allows one to treat a series of nonlinear difference equations integrable in the sense of solitons theory. The solutions to the mentioned Riemann–Hilbert problems allows us to reproduce analytic properties of classical special functions described in handbooks and to describe a series of new functions pretending to be special. For instance, this is true for difference Painlevé equations. We provide the example of applying a difference second type Painlevé equation to the representation problem for a symmetric group.
@article{UFA_2017_9_3_a11,
     author = {V. Yu. Novokshenov},
     title = {Discrete integrable equations and special functions},
     journal = {Ufa mathematical journal},
     pages = {118--130},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a11/}
}
TY  - JOUR
AU  - V. Yu. Novokshenov
TI  - Discrete integrable equations and special functions
JO  - Ufa mathematical journal
PY  - 2017
SP  - 118
EP  - 130
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a11/
LA  - en
ID  - UFA_2017_9_3_a11
ER  - 
%0 Journal Article
%A V. Yu. Novokshenov
%T Discrete integrable equations and special functions
%J Ufa mathematical journal
%D 2017
%P 118-130
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a11/
%G en
%F UFA_2017_9_3_a11
V. Yu. Novokshenov. Discrete integrable equations and special functions. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 118-130. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a11/

[1] M. J. Ablowitz, P. A. Clarkson, “Solitons, Nonlinear Evolution Equations and Inverse Scattering”, Math. Soc. Lecture Notes Series, 149, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[2] A. Borodin, “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117:3 (2003), 1–54 | DOI | MR

[3] A. Borodin, “Isomonodromy transformations of linear systems of difference equations”, Ann. Math., 160:3 (2004), 1141–1182 | DOI | MR

[4] K. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators, Operator Theory: Advances and Applications, 3, Birkhauser Verlag, Basel, 1981 | MR | Zbl

[5] P. Deift, Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, Courant Lecture Notes, New York Univ., NY, 1999 | MR

[6] P. A. Deift, “Integrable Systems and Combinatorial Theory”, Notices of the Amer. Math. Soc., 47:6 (2000), 631–640 | MR | Zbl

[7] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Tables of Integral Transforms, v. I, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1954 | MR

[8] A. S. Fokas, A. R. Its, A. V. Kitaev, “The Isomonodromy Approach to Matrix Models in 2D Quantum Gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl

[9] A. S. Fokas, A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, Painlevé Transcendents. The Riemann-Hilbert Approach, Math. Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[10] W. Fulton, Young tableaux: with applications to representation theory and geometry, London Math. Soc. Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[11] F. D. Gakhov, Boundary value problems, Dover Publications, 1990 | MR | Zbl

[12] I.M. Gessel, “Symmetric functions and Precursiveness”, J. Combin. Theory, Ser. A, 53 (1990), 257–285 | DOI | MR | Zbl

[13] B. Grammaticos, F. W. Nijhof, A. Ramani, “Discrete Painlevé equations, The Painlevé property”, CRM Ser. Math. Phys., Springer, New York, 1999, 413–516 | MR | Zbl

[14] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[15] A. R. Its, “The Riemann–Hilbert Problem and Integrable Systems”, Notices of the Amer. Math. Soc., 50:11 (2003), 1389–1400 | MR | Zbl

[16] A. V. Kitaev, “Special functions of the isomonodromy type”, Acta Appl. Math., 64 (2000), 1–32 | DOI | MR | Zbl

[17] A. P. Magnus, “Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 215–237 | DOI | MR | Zbl

[18] V. Yu. Novokshenov, “The Riemann-Hilbert Problem and Special Functions”, Geometric Methods in Physics, AIP Conf. Proc., 208, 2008, 149–161 | DOI | MR

[19] V. Yu. Novokshenov, A. A. Schelkonogov, “Distribution of zeroes to generalized Hermite polynomials”, Ufimskij Matem. Zhurn., 7:3 (2015), 57–69

[20] Y. Ohta, A. Ramani, B. Grammaticos, K. M. Tamizhmani, “From discrete to continuous Painlevé equations: a bilinear approach”, Phys. Lett. A, 216:6 (1996), 255–261 | DOI | MR

[21] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite”, Commentarii Math. Helvetici, 1 (1929), 227–254 | DOI | MR | Zbl

[22] A. B. Shabat, “The infinite-dimensional dressing dynamical system”, Inverse Problems, 8:2 (1992), 303–308 | DOI | MR | Zbl

[23] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Comm. Math. Phys., 207:3 (1999), 665–685 | DOI | MR | Zbl

[24] H. Sakai, “Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations”, Comm. Math. Phys., 220:1 (2001), 165–229 | DOI | MR | Zbl

[25] G. Szegö, Orthogonal polynomials, Colloquium Publ., 23, Amer. Math. Soc., New York, 1959 | MR | Zbl

[26] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contem. Soviet Math. Plenum Publishing Corp., New York, 1984 | MR | MR | Zbl

[27] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1996 | MR | Zbl