Estimates of Hardy–Rellich constants for polyharmonic operators and their generalizations
Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 8-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order $m$ in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O. A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M. P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of hardy's inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M. P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for $m$th order polyharmonic operators by using the products of $m$ different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E. B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains.
Keywords: polyharmonic operator, Hardy inequality, Rellich inequality
Mots-clés : convex domain.
@article{UFA_2017_9_3_a1,
     author = {F. G. Avkhadiev},
     title = {Estimates of {Hardy{\textendash}Rellich} constants for polyharmonic operators and their generalizations},
     journal = {Ufa mathematical journal},
     pages = {8--17},
     year = {2017},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a1/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Estimates of Hardy–Rellich constants for polyharmonic operators and their generalizations
JO  - Ufa mathematical journal
PY  - 2017
SP  - 8
EP  - 17
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a1/
LA  - en
ID  - UFA_2017_9_3_a1
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Estimates of Hardy–Rellich constants for polyharmonic operators and their generalizations
%J Ufa mathematical journal
%D 2017
%P 8-17
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a1/
%G en
%F UFA_2017_9_3_a1
F. G. Avkhadiev. Estimates of Hardy–Rellich constants for polyharmonic operators and their generalizations. Ufa mathematical journal, Tome 9 (2017) no. 3, pp. 8-17. http://geodesic.mathdoc.fr/item/UFA_2017_9_3_a1/

[1] T. Matskewich, P.E. Sobolevskii, “The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb{R}^n$”, Nonlinear Anal., 28 (1997), 1601–1610 | DOI | MR | Zbl

[2] M. Marcus, V.J. Mitzel, Y. Pinchover, “On the best constant for Hardy's inequality in $\mathbb{R}^n$”, Trans. Amer. Math. Soc., 350 (1998), 3237–3250 | DOI | MR

[3] E. B. Davies, “A Review of Hardy inequalities”, The Maz'ya anniversary Collection, v. 2, Oper. Theory Adv. Appl., 110, 1999, 55–67 | MR | Zbl

[4] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech. (ZAMM), 87:8–9 (2007), 632–642 | DOI | MR | Zbl

[5] F. G. Avkhadiev, A. Laptev, “Hardy Inequalities for Nonconvex Domains”, Around Research of Vladimir Maz'ya, v. I, International Mathem. Series, 11, Function Spaces, Springer, 2010, 1–12 | DOI | MR | Zbl

[6] F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to $1/4$”, Izv. Math., 78:5 (2014), 855–876 | DOI | DOI | MR | Zbl

[7] A. A. Balinsky, W. D. Evans, R. T. Lewis, The Analysis and Geometry of Hardy's Inequality, Universitext, Springer, Heidelberg–New York–Dordrecht–London, 2015, 263 pp. | DOI | MR | Zbl

[8] V. G. Maz'ya, Sobolev spaces, Grundlehren der Mathematischen Wissenschaften, 342, Springer, Berlin, 2011 | DOI | MR | MR | Zbl

[9] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York–London–Paris, 1969, 128 pp. | MR | Zbl

[10] P. Caldiroli, R. Musina, “Rellich inequalities with weights”, Calc. Var., 45 (2012), 147–164 | DOI | MR | Zbl

[11] F. Gesztesy, L. Littlejohn, Factorizations and Hardy-Rellich-type inequalities, 31 Jan 2017, 13 pp., arXiv: 1701.08929v1 [math.AP]

[12] M. P. Owen, “The Hardy-Rellich inequality for polyharmonic operators”, Proc. Royal Soc. Edinburgh, 129A (1999), 825–839 | DOI | MR | Zbl

[13] M. G. Barbatis, “Improved Rellich inequalities for the polyharmonic operator”, Indiana University Math. J., 55:4 (2006), 1401–1422 | DOI | MR | Zbl

[14] M. G. Barbatis, A. Tertikas, “On a class of Rellich inequalities”, J. Comp. Appl. Math., 194 (2006), 156–172 | DOI | MR | Zbl

[15] W. D. Evans, R. T. Lewis, “Hardy and Rellich inequalities with remainders”, Journal of Mathematical Inequalities, 1:4 (2007), 473–490 | DOI | MR | Zbl

[16] E. Berchio, D. Cassani, F. Gazzola, “Hardy-Rellich inequalities with boundary remainder terms and applications”, Manuscript. Math., 131 (2010), 427–458 | DOI | MR | Zbl

[17] F. G. Avkhadiev, “Rellich type inequalities in domains of the Euclidean space”, Russ. Math. (Izvestiya VUZ. Matem.), 60:1 (2016), 60–63 | DOI | MR | Zbl

[18] F. G. Avkhadiev, “Hardy-Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442 (2016), 469–484 | DOI | MR | Zbl

[19] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[20] F. G. Avkhadiev, “Hardy-Type inequalities on planar and spatial open sets”, Proc. Steklov Inst. Math., 255 (2006), 2–12 | DOI | MR | Zbl

[21] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer, New York, 1985 | MR | MR | Zbl

[22] F. Gazzola, H.-Ch. Grunau, G. Sweers, Polyharmonic boundary values problems, Lect. Notes in Math., Springer, 1991, 415 pp. | MR

[23] M. Reed, B. Simon, Methods of mathematical physics. Scattering theory, Academic Press, San Diego, 1979 | MR | MR | Zbl

[24] E. B. Davies, “The Hardy constant”, Quart. J. Math.Oxford Ser. (2), 46:2 (1995), 417–431 | DOI | MR | Zbl

[25] F. G. Avkhadiev, “Integral inequalities in domains of hyperbolic type and their applications”, Sborn. Math., 206:12 (2015), 1657–1681 | DOI | DOI | MR | Zbl