Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $RT$ be the class of functions $f(z)$ univalent in the unit disk $E = {z : |z| 1}$ such that $\mathrm{Re}\, f'(z) > 0$, $z\in E$, and $H_3(1)$ be the third Hankel determinant for inverse function to $f(z)$. In this paper we obtain, first an upper bound for the second Hankel determinant, $|t_2 t_3 - t_4|$, and the best possible upper bound for the third Hankel determinant $H3(1)$ for the functions in the class of inverse of reciprocal of bounded turning functions having a positive real part of order alpha.
Keywords: univalent function, function whose reciprocal derivative has a positive real part, third Hankel determinant, positive real function, Toeplitz determinants.
@article{UFA_2017_9_2_a8,
     author = {B. Venkateswarlu and N. Rani},
     title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha},
     journal = {Ufa mathematical journal},
     pages = {109--118},
     year = {2017},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/}
}
TY  - JOUR
AU  - B. Venkateswarlu
AU  - N. Rani
TI  - Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha
JO  - Ufa mathematical journal
PY  - 2017
SP  - 109
EP  - 118
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/
LA  - en
ID  - UFA_2017_9_2_a8
ER  - 
%0 Journal Article
%A B. Venkateswarlu
%A N. Rani
%T Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha
%J Ufa mathematical journal
%D 2017
%P 109-118
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/
%G en
%F UFA_2017_9_2_a8
B. Venkateswarlu; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/

[1] R. M. Ali, “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc., 26:1 (2003), 63–71 | MR | Zbl

[2] K. O. Babalola, “On $H_{3}(1)$ Hankel determinant for some classes of univalent functions”, Inequality Theory and Applications, 6 (2010), 1–7

[3] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983 | MR | Zbl

[4] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR | Zbl

[5] U. Grenander, G. Szegö, Toeplitz forms and their applications, Chelsea Publishing Co., New York, 1984 | MR | Zbl

[6] A. Janteng, S.A. Halim, M. Darus, “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR

[7] J. W. Layman, “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl

[8] R.J. Libera, E.J. Zlotkiewicz, “Coefficient bounds for the inverse of a function with derivative in $\mathbb{P}$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl

[9] T.H. Mac Gregor, “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl

[10] K.I. Noor, “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl

[11] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl

[12] Ch. Pommerenke, “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., s1-41:1 (1966), 111–122 | DOI | MR | Zbl

[13] B. Simon, Orthogonal polynomials on the unit circle, part 1, v. 1, AMS Colloquium Publ., 54, Classical theory, American Mathematicical Socety, Providence, RI, 2005 | MR | Zbl

[14] D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy, “Third Hankel determinant for the inverse of a function whose derivative has a positive real part”, Matematychni Studii, 42:1 (2014), 54–60 | MR | Zbl

[15] B. Venkateswarlu, D. Vamshee Krishna, N. Rani, “Third Hankel determinant for the inverse of reciprocal of bounded turning functions”, Buletinul academiei de stiinte a Republicii Moldova. Matematica, 79:3 (2015), 50–59 | MR | Zbl

[16] B. Venkateswarlu, D. Vamshee Krishna, N. Rani, “Third Hankel determinant for the of reciprocal of bounded turning functions has a positive real part of order alpha”, Studia Universitatis Babe-Bolyai Mathematica (to appear) | MR