@article{UFA_2017_9_2_a8,
author = {B. Venkateswarlu and N. Rani},
title = {Third {Hankel} determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha},
journal = {Ufa mathematical journal},
pages = {109--118},
year = {2017},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/}
}
TY - JOUR AU - B. Venkateswarlu AU - N. Rani TI - Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha JO - Ufa mathematical journal PY - 2017 SP - 109 EP - 118 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/ LA - en ID - UFA_2017_9_2_a8 ER -
%0 Journal Article %A B. Venkateswarlu %A N. Rani %T Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha %J Ufa mathematical journal %D 2017 %P 109-118 %V 9 %N 2 %U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/ %G en %F UFA_2017_9_2_a8
B. Venkateswarlu; N. Rani. Third Hankel determinant for the inverse of reciprocal of bounded turning functions has a positive real part of order alpha. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 109-118. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a8/
[1] R. M. Ali, “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc., 26:1 (2003), 63–71 | MR | Zbl
[2] K. O. Babalola, “On $H_{3}(1)$ Hankel determinant for some classes of univalent functions”, Inequality Theory and Applications, 6 (2010), 1–7
[3] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983 | MR | Zbl
[4] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR | Zbl
[5] U. Grenander, G. Szegö, Toeplitz forms and their applications, Chelsea Publishing Co., New York, 1984 | MR | Zbl
[6] A. Janteng, S.A. Halim, M. Darus, “Coefficient inequality for a function whose derivative has a positive real part”, J. Inequal. Pure Appl. Math., 7:2 (2006), 1–5 | MR
[7] J. W. Layman, “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl
[8] R.J. Libera, E.J. Zlotkiewicz, “Coefficient bounds for the inverse of a function with derivative in $\mathbb{P}$”, Proc. Amer. Math. Soc., 87:2 (1983), 251–257 | MR | Zbl
[9] T.H. Mac Gregor, “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl
[10] K.I. Noor, “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roum. Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl
[11] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl
[12] Ch. Pommerenke, “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., s1-41:1 (1966), 111–122 | DOI | MR | Zbl
[13] B. Simon, Orthogonal polynomials on the unit circle, part 1, v. 1, AMS Colloquium Publ., 54, Classical theory, American Mathematicical Socety, Providence, RI, 2005 | MR | Zbl
[14] D. Vamshee Krishna, B. Venkateswarlu, T. RamReddy, “Third Hankel determinant for the inverse of a function whose derivative has a positive real part”, Matematychni Studii, 42:1 (2014), 54–60 | MR | Zbl
[15] B. Venkateswarlu, D. Vamshee Krishna, N. Rani, “Third Hankel determinant for the inverse of reciprocal of bounded turning functions”, Buletinul academiei de stiinte a Republicii Moldova. Matematica, 79:3 (2015), 50–59 | MR | Zbl
[16] B. Venkateswarlu, D. Vamshee Krishna, N. Rani, “Third Hankel determinant for the of reciprocal of bounded turning functions has a positive real part of order alpha”, Studia Universitatis Babe-Bolyai Mathematica (to appear) | MR