@article{UFA_2017_9_2_a7,
author = {I. K. Shafigullin},
title = {Lower bound for the {Hardy} constant for an arbitrary domain in $\mathbb{R}^n$},
journal = {Ufa mathematical journal},
pages = {102--108},
year = {2017},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a7/}
}
I. K. Shafigullin. Lower bound for the Hardy constant for an arbitrary domain in $\mathbb{R}^n$. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 102-108. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a7/
[1] V.G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin–New York, 1985 | MR | Zbl
[2] G. Talenti, “Osservazione sopra una classe di disuguaglianze”, Rend. Semin. mat. efis. Milano, 39 (1969), 171–185 | DOI | MR | Zbl
[3] G. Tomaselli, “A class of inequalities”, Boll. Unione mat. ital. Ser. 4, 1969, no. 6, 622–631 | MR | Zbl
[4] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific Pub Co Inc., 2003, 376 | MR
[5] Dubinskii Yu.A., “Ob odnom neravenstve tipa Khardi i ego prilozheniyakh”, Teoriya funktsii i differentsialnye uravneniya, Sbornik statei. K 105-letiyu so dnya rozhdeniya akademika Sergeya Mikhailovicha Nikolskogo, Tr MIAN, 269, MAIK, M., 2010, 112–132 | Zbl
[6] Prokhorov D.V., Stepanov V.D., “O vesovykh neravenstvakh Khardi v smeshannykh normakh”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Sbornik statei. K 90-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Lva Dmitrievicha Kudryavtseva, Tr. MIAN, 283, MAIK, M., 2013, 155–170 | Zbl
[7] F.G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8–9 (2007), 632–642 | DOI | MR | Zbl
[8] M. Marcus, V.J. Mizel, Y. Pinchover, “On the best constants for Hardy's inequality in $\mathbb{R}^n$”, Trans. Amer. Math. Soc., 350 (1998), 3237–3250 | DOI | MR
[9] E.B. Davies, “The Hardy constant”, Quart. J. Math. Oxford (2), 46:4 (1995), 417–431 | DOI | MR | Zbl
[10] T. Matskewich, P.E. Sobolevskii, “The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbb{R} ^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR | Zbl
[11] H. Brezis, M. Marcus, “Hardy's inequality revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997), 217–237 | MR | Zbl
[12] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR | Zbl
[13] V. Opic, A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Math., 219, 1990 | MR | Zbl
[14] Avkhadiev F.G., Shafigullin I.K., “Tochnye otsenki konstant Khardi dlya oblastei so spetsialnymi granichnymi svoistvami”, Izvestiya vuzov. Matem., 2014, no. 2, 69–73
[15] Avkhadiev F.G., Shafigullin I.K., “Otsenki konstant Khardi pri trubchatom rasshirenii mnozhestv i v oblastyakh s konechnymi granichnymi momentami”, Matematicheskie trudy, 16:2 (2013), 3–12
[16] Avkhadiev F.G., Nasibullin R.G., Shafigullin I.K., “Neravenstva tipa Khardi so stepennymi i logarifmicheskimi vesami v oblastyakh evklidova prostranstva”, Izvestiya vuzov. Matem., 2011, no. 9, 90–94