Analogue of Tricomi problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 92-101
Voir la notice de l'article provenant de la source Math-Net.Ru
In the work we study an analogue of Tricomi problems for characteristically loaded hyperbolic-parabolic equations with variable coefficients. We prove the unique solvability of the studied problem. The uniqueness of the solutions is proved by means of the maximum principle, while the existence is established by the method of integral equations.
Keywords:
loaded equations, mixed equations,
hyperbolic-parabolic equations, Tricomi problem, boundary value problem.
@article{UFA_2017_9_2_a6,
author = {K. U. Khubiev},
title = {Analogue of {Tricomi} problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients},
journal = {Ufa mathematical journal},
pages = {92--101},
publisher = {mathdoc},
volume = {9},
number = {2},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a6/}
}
TY - JOUR AU - K. U. Khubiev TI - Analogue of Tricomi problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients JO - Ufa mathematical journal PY - 2017 SP - 92 EP - 101 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a6/ LA - en ID - UFA_2017_9_2_a6 ER -
K. U. Khubiev. Analogue of Tricomi problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 92-101. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a6/