Dicrete H\"older estimates for a certain kind of parametrix. II
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 62-91

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first paper of this series we have introduced a certain parametrix and the associated potential. The parametrix corresponds to an uniformly elliptic second order differential operator with locally Hölder continuous coefficients in the half-space. Here we show that the potential is an approximate left inverse of the differential operator modulo hyperplane integrals, with the error estimated in terms of the local Hölder norms. As a corollary, we calculate approximately the potential whose density and differential operator originate from the straightening of a special Lipschitz domain. This corollary is meant for the future derivation of approximate formulas for harmonic functions.
Keywords: cubic discretization, Lipschitz domain, local Hölder norms, parametrix, potential, straightening.
@article{UFA_2017_9_2_a5,
     author = {A. I. Parfenov},
     title = {Dicrete {H\"older} estimates for a certain kind of parametrix. {II}},
     journal = {Ufa mathematical journal},
     pages = {62--91},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a5/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Dicrete H\"older estimates for a certain kind of parametrix. II
JO  - Ufa mathematical journal
PY  - 2017
SP  - 62
EP  - 91
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a5/
LA  - en
ID  - UFA_2017_9_2_a5
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Dicrete H\"older estimates for a certain kind of parametrix. II
%J Ufa mathematical journal
%D 2017
%P 62-91
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a5/
%G en
%F UFA_2017_9_2_a5
A. I. Parfenov. Dicrete H\"older estimates for a certain kind of parametrix. II. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 62-91. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a5/