Lower bounds for the area of the image of a circle
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work we consider $Q$-homeomorphisms w.r.t $p$-modulus on the complex plane as $p>2$. We obtain a lower bound for the area of the image of a circle under such mappings. We solve the extremal problem on minimizing the functional of the area of the image of a circle.
Keywords: $p$-modulus of a family of curves, $p$-capacity of condenser, quasiconformal mappings, $Q$-homeomorphisms w.r.t. $p$-modulus.
@article{UFA_2017_9_2_a4,
     author = {B. A. Klishchuk and R. R. Salimov},
     title = {Lower bounds for the area of  the image of a circle},
     journal = {Ufa mathematical journal},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/}
}
TY  - JOUR
AU  - B. A. Klishchuk
AU  - R. R. Salimov
TI  - Lower bounds for the area of  the image of a circle
JO  - Ufa mathematical journal
PY  - 2017
SP  - 55
EP  - 61
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/
LA  - en
ID  - UFA_2017_9_2_a4
ER  - 
%0 Journal Article
%A B. A. Klishchuk
%A R. R. Salimov
%T Lower bounds for the area of  the image of a circle
%J Ufa mathematical journal
%D 2017
%P 55-61
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/
%G en
%F UFA_2017_9_2_a4
B. A. Klishchuk; R. R. Salimov. Lower bounds for the area of  the image of a circle. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/