Lower bounds for the area of the image of a circle
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the work we consider $Q$-homeomorphisms w.r.t $p$-modulus on the complex plane as $p>2$. We obtain a lower bound for the area of the image of a circle under such mappings. We solve the extremal problem on minimizing the functional of the area of the image of a circle.
Keywords: $p$-modulus of a family of curves, $p$-capacity of condenser, quasiconformal mappings, $Q$-homeomorphisms w.r.t. $p$-modulus.
@article{UFA_2017_9_2_a4,
     author = {B. A. Klishchuk and R. R. Salimov},
     title = {Lower bounds for the area of the image of a circle},
     journal = {Ufa mathematical journal},
     pages = {55--61},
     year = {2017},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/}
}
TY  - JOUR
AU  - B. A. Klishchuk
AU  - R. R. Salimov
TI  - Lower bounds for the area of the image of a circle
JO  - Ufa mathematical journal
PY  - 2017
SP  - 55
EP  - 61
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/
LA  - en
ID  - UFA_2017_9_2_a4
ER  - 
%0 Journal Article
%A B. A. Klishchuk
%A R. R. Salimov
%T Lower bounds for the area of the image of a circle
%J Ufa mathematical journal
%D 2017
%P 55-61
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/
%G en
%F UFA_2017_9_2_a4
B. A. Klishchuk; R. R. Salimov. Lower bounds for the area of the image of a circle. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/

[1] Boyarskii B.V., “Gomeomorfnye resheniya sistem Beltrami”, Doklady Akademii nauk, 102 (1955), 661–664 | Zbl

[2] F.W. Gehring, E. Reich, “Area distortion under quasiconformal mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 388 (1966), 1–15 | MR

[3] K. Astala, “Area dislortron of quasrconformal mapprngs”, Acta Math., 173 (1994), 37–60 | DOI | MR | Zbl

[4] A. Eremenko, D.H. Hamilton, “On the area distortion by quasiconformal mappings”, Proc. Amer. Math. Soc., 123 (1995), 2793–2797 | DOI | MR | Zbl

[5] Lavrentev M.A., Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, M., 1962, 136 pp.

[6] B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts in Mathematics, 19, EMS Publishing House, 2013, 214 pp. | MR | Zbl

[7] Lomako T.V., Salimov R.R., “K teorii ekstremalnykh zadach”, Zbirnik prats In-tu matematiki NANU, 7:2 (2010), 264–269 | Zbl

[8] Salimov R.R., “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171

[9] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969, 133 pp.

[10] O. Lehto, K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York etc., 1973, 258 pp. | MR | Zbl

[11] C.J. Bishop, V.Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Intern. J. Math. and Math. Scie., 22 (2003), 1397–1420 | DOI | MR | Zbl

[12] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the theory of Riemann surfaces, Proc. Conf. (Stonybrook, N.Y., 1969), Ann. of Math. Studies, 66, 1971, 175–193 | MR

[13] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1–40 | MR

[14] Shlyk V.A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zhurn., 34:6 (1993), 216–221 | Zbl

[15] Kruglikov V.I., “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matematicheskii sbornik, 130:2 (1986), 185–206

[16] Saks S., Teoriya integrala, Izdatelstvo IL, M., 1949, 495 pp.

[17] R. Salimov, E. Sevost'yanov, “The Poletskii and Vaisala inequalities for the mappings with $(p,q)$-distortion”, Complex Variables and Elliptic Equations, 59:2 (2014), 217–231 | DOI | MR | Zbl