Lower bounds for the area of  the image of a circle
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the work we consider $Q$-homeomorphisms w.r.t $p$-modulus on the complex plane as $p>2$. We obtain a lower bound for the area of the image of a circle under such mappings. We solve the extremal problem on minimizing the functional of the area of the image of a circle.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$p$-modulus of a family of curves,    $p$-capacity of condenser, quasiconformal mappings, $Q$-homeomorphisms w.r.t. $p$-modulus.
                    
                    
                    
                  
                
                
                @article{UFA_2017_9_2_a4,
     author = {B. A. Klishchuk and R. R. Salimov},
     title = {Lower bounds for the area of  the image of a circle},
     journal = {Ufa mathematical journal},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/}
}
                      
                      
                    B. A. Klishchuk; R. R. Salimov. Lower bounds for the area of the image of a circle. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/
