@article{UFA_2017_9_2_a4,
author = {B. A. Klishchuk and R. R. Salimov},
title = {Lower bounds for the area of the image of a circle},
journal = {Ufa mathematical journal},
pages = {55--61},
year = {2017},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/}
}
B. A. Klishchuk; R. R. Salimov. Lower bounds for the area of the image of a circle. Ufa mathematical journal, Tome 9 (2017) no. 2, pp. 55-61. http://geodesic.mathdoc.fr/item/UFA_2017_9_2_a4/
[1] Boyarskii B.V., “Gomeomorfnye resheniya sistem Beltrami”, Doklady Akademii nauk, 102 (1955), 661–664 | Zbl
[2] F.W. Gehring, E. Reich, “Area distortion under quasiconformal mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 388 (1966), 1–15 | MR
[3] K. Astala, “Area dislortron of quasrconformal mapprngs”, Acta Math., 173 (1994), 37–60 | DOI | MR | Zbl
[4] A. Eremenko, D.H. Hamilton, “On the area distortion by quasiconformal mappings”, Proc. Amer. Math. Soc., 123 (1995), 2793–2797 | DOI | MR | Zbl
[5] Lavrentev M.A., Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, M., 1962, 136 pp.
[6] B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, EMS Tracts in Mathematics, 19, EMS Publishing House, 2013, 214 pp. | MR | Zbl
[7] Lomako T.V., Salimov R.R., “K teorii ekstremalnykh zadach”, Zbirnik prats In-tu matematiki NANU, 7:2 (2010), 264–269 | Zbl
[8] Salimov R.R., “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171
[9] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969, 133 pp.
[10] O. Lehto, K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York etc., 1973, 258 pp. | MR | Zbl
[11] C.J. Bishop, V.Ya. Gutlyanskii, O. Martio, M. Vuorinen, “On conformal dilatation in space”, Intern. J. Math. and Math. Scie., 22 (2003), 1397–1420 | DOI | MR | Zbl
[12] F.W. Gehring, “Lipschitz mappings and the $p$-capacity of ring in $n$-space”, Advances in the theory of Riemann surfaces, Proc. Conf. (Stonybrook, N.Y., 1969), Ann. of Math. Studies, 66, 1971, 175–193 | MR
[13] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1. Math., 448 (1969), 1–40 | MR
[14] Shlyk V.A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zhurn., 34:6 (1993), 216–221 | Zbl
[15] Kruglikov V.I., “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matematicheskii sbornik, 130:2 (1986), 185–206
[16] Saks S., Teoriya integrala, Izdatelstvo IL, M., 1949, 495 pp.
[17] R. Salimov, E. Sevost'yanov, “The Poletskii and Vaisala inequalities for the mappings with $(p,q)$-distortion”, Complex Variables and Elliptic Equations, 59:2 (2014), 217–231 | DOI | MR | Zbl